首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
通过对超声速(COIL)的功率和效率计算,本文导出了适合于均匀和非均匀加宽效应同时起作用和非均匀加宽效应占优的情况,以及考虑频移效应的速率方程 (RE) 模型,得到了温度、压力、碘浓度以及频移对COIL的功率和效率的影响。  相似文献   

2.
超声速氧碘化学激光的性能分析   总被引:6,自引:3,他引:3       下载免费PDF全文
通过对超声速氧碘化学激光 (COIL)的功率和效率计算 ,导出了适合于均匀和非均匀加宽效应同时起作用和非均匀加宽效应占优的情况 ,以及考虑频移效应的速率方程 (RE)模型 ,得到了温度、压力、碘浓度以及频移对 COIL的功率和效率的影响。  相似文献   

3.
 将速率方程(RE)模型与化学动力学模型相结合,讨论了增益饱和模型与化学反应系统对COIL性能的影响。流动为预混的一维模型,考虑了10种成分和21个化学反应,分析计算了未分解碘分子,激发态氧产率,水含量以及温度等因素对COIL性能的影响。计算结果表明,碘流量过多,混合和反应过程中消耗大量能量;碘流量过低,导致粒子数反转和增益过低,对于能量的提取不利。  相似文献   

4.
 通过对超声速(COIL)的功率和效率计算,本文导出了适合于均匀和非均匀加宽效应同时起作用和非均匀加宽效应占优的情况,以及考虑频移效应的速率方程 (RE) 模型,得到了温度、压力、碘浓度以及频移对COIL的功率和效率的影响。  相似文献   

5.
针对采用化学式碘发生器的氧碘激光器稳定出光时间较短的情况,通过热力学和化学动力学方面的实验和分析进行了化学式碘发生装置供碘稳定性的研究。分析了物料转化率和反应速率随反应初始温度及反应时间的变化,得到了固相产物的灰层扩散是该反应控制步骤的结论,明确了实验中CuI要大大过量,用氯气量控制碘量的原则,同时确定了适宜的起始反应温度。优化后,在近15 s时间内碘流量变化小于15%,显示出了较好的供碘稳定性,此时CuI的转化率为23%。  相似文献   

6.
There is a need to reduce the computational expense of practical multidimensional combustion simulations. Simulation of Homogeneous Charge Compression Ignition (HCCI) engine processes requires consideration of detailed chemistry in order to capture the ignition and combustion characteristics. Even with relatively coarse numerical meshes and reduced chemistry mechanisms, calculation times are still unacceptably long. For the simulation of Direct Injection (DI) engines, fine meshes are needed to achieve the resolution required by the spray and mixing models, and they are computationally expensive even with reduced chemistry. In addition, the increasing application of CFD for engine design optimization is pushing the demand to reduce computational time. In current design optimizations, depending on the size of the parametric space, hundreds of individual simulations are needed.

This work presents an efficient Adaptive Multi-grid Chemistry (AMC) model that can be used in engine CFD codes for simulations of HCCI and DI engines with detailed chemistry. It was found that the number of cells computed with the chemistry solver can be reduced by two orders of magnitude for HCCI engines. The results predicted by the present KIVA AMC code are also consistent with those calculated by the original code using every cell.

In the method, progressively coarser grids are used for cells with similar gas properties in the chemistry calculation (up to four neighbour levels) or in the global method, cells are grouped without regard for their locations in the cylinder. Averaged and gradient-preserving remapping techniques used in multi-zone engine simulations were also explored. A parametric study was conducted for determining the model variables, such as the degree of local homogeneity for the multi-grid solvers.

The simulation results were compared with experimental data obtained from a Honda engine operated with n-heptane under HCCI conditions for which directly measured in-cylinder temperature and H2O mole fraction data are available. In addition, simulation results were found to agree well with experimental data from a DI diesel engine operated under PCCI conditions with ultra-high EGR rates. It was found that computer time was reduced by a factor of ten for HCCI cases and two to three for DI cases without losing prediction accuracy.  相似文献   

7.
Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species with practical computer time.  相似文献   

8.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号