首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在胶束体系中,Eu3+的发光强度可通过加入La3+-TTA-Phen(TTA:噻吩甲酰三氟丙酮;Phen:邻菲咯琳)而大大增强,这种发光增强作用被认为是由配体TTA经过三线态向EU3+的共振能级转移能量所致[1].本文利用LB技术将这种Eu3+增强的发光转移到有序排列的LB膜中,研究了La(TTA)3Phen对Eu3+的发光增强作用,并用LB方法探讨了这种分子间的能量转移过程,发现这种能量转移距离小于3um,属经由三线态的短程交换能量转移过程.同时,用荧光光谱和低角X衍射对这种混合稀土配合物LB膜进行了表征.1实验部分配合物La(TTA)3Phen和Eu…  相似文献   

2.
We characterize a series of dicyanovinyl-terthiophenes with different alkyl side chains. Variations of side chain substitution patterns and length mainly affect the morphology of the evaporated thin films, which in turn sensitively influences properties like absorption, energy levels, and thin film roughness. To investigate changes in transfer processes between electron donor (D) and acceptor (A) molecules due to side chain variations, we use photoinduced absorption spectroscopy (PIA). PIA probes the long-living photoexcited species at the D-A interface: triplet excitons, cations, and anions. For a blend layer of dicyanovinyl-terthiophene and the electron acceptor fullerene C(60), an energy transfer via the singlet and triplet manifold of C(60) occurs. The recombination dynamics of the triplet excitons reveal two components that differ in their lifetime and generation rate by 1 order of magnitude. By comparing the dynamics of triplet excitons in neat and blend layers, we estimate the energy transfer efficiency in dependence of the type of side chain. The compound with methyl side chains shows remarkable properties regarding thin film absorption, surface roughness, and energy transfer efficiency, which we attribute to the specific nanomorphology of the thin film.  相似文献   

3.
In some systems, the donor of a triplet—triplet energy transfer can be sensitized in its singlet state through a singlet—singlet energy transfer (Dexter mechanism), where the donor is the acceptor of the triplet transfer itself. As a consequence an extra acceptor molecule in the triplet energy transfer is present in the vicinity of the donor, thus enhancing the efficiency of the transfer process. Experiments show clearly this effect and a diffusional model gives semi-quantitative agreement with the experimental data.  相似文献   

4.
Highly sensitive photoalignment of liquid crystals (LCs) can be realized by axis-selective triplet energy transfer. Addition of a triplet photosensitizer (phosphorescent donor) into a photocrosslinkable polymer tethering E-cinnamate side chains ensures dramatic enhancement of photosensitivity to generate the optical anisotropy of polymer film and surface-assisted LC photoalignment. Photoirradiation of triplet photosensitizer-doped polymer films with linearly polarized 365 nm light for the selective excitation of triplet sensitizer gives rise to optical anisotropy of cinnamates as a result of axis-selective triplet energy transfer. By analyzing phosphorescence spectra with theoretical Perrin's formula, we find that triplet energy transfer is efficient within a radius of ~0.3 nm from the triplet photosensitizer. Such photoaligned polymer films can be used for the surface-assisted orientation photocontrol of not only calamitic LC, but also discotic LC, even for extremely low exposure energies. The present procedure would be greatly advantageous for high-throughput fabrication of optical devices by photoalignment techniques.  相似文献   

5.
本文研究了由硬脂酸香豆素制得的LB膜对n-Si/Ni电极性能的修饰作用.该LB膜沉积方式是Z型的,成膜之后吸收蓝移(由343nm移至325nm).在60mW·cm^-2溴钨灯光照下,n-Si/Ni/3LB/Fe(CN) /Pt电池的光电转换效率增大了一倍,稳定性亦有明显改善.交流阻抗测量表明,光照使n-Si/Ni/3LB电极的电解电阻大大减小,实验结果表明,硬脂酸香豆素LB膜对n-Si/Ni电极上的光致电荷传递过程的修饰作用是良好的.  相似文献   

6.
The results of the study of interlayer triplet-triplet energy transfer from anthracene molecules to Nile Red molecules in Langmuir-Blodgett films are presented. The observed sensitized delayed fluorescence of the energy acceptor is shown to be due to annihilation of migrating triplet excitons. It has been found that the decay kinetics of delayed fluorescence of the donor and the acceptor has a complex form and is described by a combination of the power and exponential functions. The dependence of the energy transfer efficiency on the distance between the donor and acceptor layers was studied.  相似文献   

7.
A series of artificial photosynthesis porphyrin compounds consisting of electron donor and electron acceptor (compounds 1-6) were synthesized. Their spectroscopic behaviors in solution were investigated and the synthetic molecular devices were prepared with these molecules by using LB technique. It was indicated that multistep electron transfer and charge separation for these compounds actually occur, which is of great advantage to their photoelectric conversion. An efficient energy transfer process takes place for compound 6. A mechanism involving photoinduced electron transfer and multistep charge separation for these compounds was suggested. With only one monolayer of tetrad 1 LB film on the surface of Sn02 conductive glass, high photo-driven voltage and current were obtained.  相似文献   

8.
Abstract— The temperature dependencies of the primary donor triplet state spectra are presented for the phorosynthetic bacteria Rhodopseudomonas sphaeroides wild type. GIC and R26. The data suggest that energy transfer from the primary donor triplet state to the reaction center carotenoid is dependent on the type of carotenoid present, reversible in the case of strain GIC, and best understood by a model depicting the kinetic processes that can occur between two potential energy surfaces; one representing the state 3BChl2*Car and the other representing BChl23Car*. Furthermore, it is shown that the onset of spin lattice relaxation in the primary donor triplet is most likely coupled to the same energy vibrational mode as that which promotes triplet state energy transfer from the primary donor to the reaction center carotenoid  相似文献   

9.
The asymptotic quantum yield of triplet energy transfer is found by calculating the fraction of acceptor molecules with energy above the minimum energy for decomposition. This is done by allowing for a statistical energy distribution among the internal modes in the collision complex. It is found that for a monatomic triplet donor most of the triplet energy is transferred to the acceptor molecule, while for a polyatomic donor molecule only a fraction of it is available for future decomposition of the acceptor.  相似文献   

10.
The scope of the present work is the investigation of proton transport through monomolecular Langmuir-Blodgett (LB) films. The films were formed from amphiphilic molecules: 2-naphtholo-6-sulfonamide of dodecylamine (N) and 1,4-anthraquinono-2 sulfonamide of dodecylamine (A). The 2-naphthol derivative can act as a proton donor due to excited state proton transfer (ESPT) and the 1,4-anthraquinone group can play the role of proton acceptor because of protonation of the reduced form if it is present. Absorption and emission spectra of LB films containing N and A were registered and separated into component bands. Individual absorption and emission peaks observed were assigned to given forms of chromophores. The behavior of different component bands reflects the state of anthraquinone dependent on proton concentration. A correlation of rate and efficiency of ESPT, with changes of the spectra of A, may be expected to yield information concerning the transport of protons from N to A. The influence of the donor-acceptor distance, sample humidity, film arrangement and the presence of protonophores (Gramicidin A) on proton transfer is studied. Our results indicate that the proton can be transported through the film but its concentration vanishes at the distance greater than 30 A. The efficiency of proton transfer depends strongly on water content, film structure and the presence of ion channels.  相似文献   

11.
In protein-cofactor reaction center (RC) complexes of purple photosynthetic bacteria, the major role of the bound carotenoid (C) is to quench the triplet state formed on the primary electron donor (P) before its sensitization of the excited singlet state of molecular oxygen from its ground triplet state. This triplet energy is transferred from P to C via the bacteriochlorophyll monomer B(B). Using time-resolved electron paramagnetic resonance (TREPR), we have examined the temperature dependence of the rates of this triplet energy transfer reaction in the RC of three wild-type species of purple nonsulfur bacteria. Species-specific differences in the rate of transfer were observed. Wild-type Rhodobacter capsulatus RCs were less efficient at the triplet transfer reaction than Rhodobacter sphaeroides RCs, but were more efficient than Rhodospirillum rubrum RCs. In addition, RCs from three mutant strains of R. capsulatus carrying substitutions of amino acids near P and B(B) were examined. Two of the mutant RCs showed decreased triplet transfer rates compared with wild-type RCs, whereas one of the mutant RCs demonstrated a slight increase in triplet transfer rate at low temperatures. The results show that site-specific changes within the RC of R. capsulatus can mimic interspecies differences in the rates of triplet energy transfer. This application of TREPR was instrumental in defining critical energetic and coupling factors that dictate the efficiency of this photoprotective process.  相似文献   

12.
《Chemical physics letters》2002,350(3-4):291-299
The electronic coupling for triplet energy transfer is calculated by time-dependent density functional theory (TD-DFT) for a set of tri-chromophoric systems based on a zinc(II) porphyrin donor and the corresponding free base acceptor covalently connected by different hydrocarbon bridging chromophores. The calculated electronic coupling, for systems with identical donor acceptor distances, is sensitive to the bridge electronic structure and shows a significant dependence for the bridge and donor-bridge conformations. The computational results compare quantitatively to measurements of triplet energy transfer rates in the corresponding donor-bridge-acceptor systems.  相似文献   

13.
For real‐world applications of photon upconversion based on the triplet–triplet annihilation (TTA‐UC), it is imperative to develop solid‐state TTA‐UC systems that work effectively under low excitation power comparable to solar irradiance. As an approach in this direction, aromatic crystals showing high triplet diffusivity are expected to serve as a useful platform. However, donor molecules inevitably tend to segregate from the host acceptor crystals, and this inhomogeneity results in the disappointing performance of crystalline state TTA‐UC. In this work, a series of cast‐film‐forming acceptors was developed, which provide both regular acceptor alignment and soft domains of alkyl chains that accommodate donor molecules without segregation. A typical triplet sensitizer, PtII octaethylporphyrin (PtOEP), was dispersed in these acceptor crystals without aggregation. As a result, efficient triplet energy transfer from the donor to the acceptor and diffusion of triplet excitons among regularly aligned anthracene chromophores occurred. It resulted in TTA‐UC emission at low excitation intensities, comparable to solar irradiance.  相似文献   

14.
Russian Chemical Bulletin - The efficiency of the Förster resonance energy transfer (FRET) in a monolayer film containing the energy donor and energy acceptor fluorophores is low since the...  相似文献   

15.
Electron donor-acceptor dyad ensembles of a water-soluble cationic zinc porphyrin (viz., zinc tetrakis(N-methylpyridinium)porphyrin tetrachloride, Zn(TMPyP)) and a C60 derivative that bears an imidazole ligand (viz., 2-(phenylimidazolyl)fulleropyrrolidine, C60im) were assembled during the formation of Langmuir and then Langmuir-Blodgett (LB) films. Surface pressure versus surface area isotherms and surface pressure time profiles, as well as Brewster angle microscopic images documented that the Langmuir films formed were remarkably stable. Subsequently, these Langmuir films were transferred onto different solid substrates, by using the LB technique, for spectroscopic and photoelectrochemical characterization. The UV-vis spectroscopic investigations confirmed that the water-soluble Zn(TMPyP) was, indeed, transferred together with C60im in the LB films. Upon visible light illumination of these LB films, deposited on the ITO transparent conductive supports, a photocurrent generated in the C60im-Zn(TMPyP) system is ascribed to an efficient photoinduced electron transfer from the electron donor, porphyrin singlet excited-state to the electron acceptor, C60. Overall, internal photon-to-current efficiency, IPCE, of the photoanodic current generation (with ascorbate as a sacrificial electron donor) in the ITO/C60im-Zn(TMPyP)/ascorbate/Pt construct is over 5x larger than that of the photocathodic system (with methyl viologen, MV2+, as a sacrificial electron acceptor) in the ITO/Zn(TMPyP)-C60im/MV2+/Pt construct. Highly ordered film stacking favors vectorial electron transfer within the dyad, giving rise to the highest IPCE values of 2.5% determined for a photoanode that was composed of around 20 monolayer films.  相似文献   

16.
Abstract— The photoreduction of oxonine, thionine and selenine with the reducing agent allylthiourea was investigated by flash photolysis. The oxonine triplet state was produced by triplet-triplet energy transfer with 9,10-dibromoanthracene as donor. For all three dyes the rate constant of the electron transfer is considerably higher for the acid triplet form than that of the corresponding reaction of the basic triplet form. It is shown that the higher reactivity of the acid triplet can be related to its higher reduction potential which is available from the difference of the pK values of triplet and semiquinone of the dye.  相似文献   

17.
本文研究了金属(镍、铅)与Langmuir-Blodgett膜对n-Si电极光电化学行为的影响, 观察到镍与铅能增强该电极的能量转换效率与稳定性。测定和讨论了八种有机物得的LB膜对n-Si/Ni电极的修饰作用, 最佳的长链香豆素LB膜使其效率倍增。还研究了具有MIS器件结构的Si/LB/Al电极的光电化学行为, 发现它具有良好的光电效应。  相似文献   

18.
Effective photocurrent generation by visible light irradiation on hetero-deposited polymer Langmuir-Blodgett (LB) films containing tris(bipyridine) ruthenium(II) (Ru(bpy)3(2+)) and anthracene derivatives was observed. The photocurrent amplification was found to be assisted by the photoinduced energy/electron transfer cascade, which consists of the interlayer triplet-triplet energy transfer process from photoexcited Ru(bpy)3(2+) to anthracene, and then electron transfer processes from the triplet anthracene to a viologen acceptor, from Ru(bpy)3(2+) to the oxidized anthracene and from the electrode to Ru(bpy)3(3+).  相似文献   

19.
Yang  Lei  Qin  Linqing  Xu  Yunxiao  Zhang  Huotian  Lv  Lei  Chen  Kepeng  Sui  Xinyu  Zhong  Yangguang  Guo  Yuan  Gao  Feng  Zhao  Jianzhang  Li  Yuhao  Liu  Xinfeng  Yi  Yuanping  Lu  Xinhui  Peng  Aidong  Huang  Hui 《中国科学:化学(英文版)》2019,62(7):897-903
The effect of chalcogen heteroatom variation on donor materials has been systematically investigated. However, this effect on acceptors has rarely been explored. Herein, nonfullerene acceptors BFPSP and BFPTP were reported by simply changing the chalcogen atoms from S to Te. The differences between BFPSP and BFPTP in light absorption, energy levels, excited-state lifetimes, energy loss, charge mobilities, morphology, and photovoltaic properties were systematically investigated to understand the heteroatom effects. More importantly, the electroluminescence spectra, external quantum efficiency of photovoltaics and TDDFTcalculations revealed that the triplet excited state(T_1) in energy of BFPTP equals to the charge transfer(CT) state in PBDBT:BFPTP, which allows T1 excitons, generated by intersystem crossing, to split into free charges to contribute to the efficiency.This contribution provides a strategy for tuning the photophysical properties of nonfullerene acceptors and designing high performance triplet materials for OSCs.  相似文献   

20.
Abstract— Interaction of naphthalene triplets with trans -piperylene leads to triplet energy transfer with unit efficiency. When cis -piperylene is used as a quencher of naphthalene triplets, the efficiency of triplet energy transfer is found to be 0–76 ± 004. The rest of the quenching encounters in this case lead to deactivation of naphthalene triplets, without energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号