首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose a decomposition algorithm for a special class of nonconvex mixed integer nonlinear programming problems which have an assignment constraint. If the assignment decisions are decoupled from the remaining constraints of the optimization problem, we propose to use a column enumeration approach. The master problem is a partitioning problem whose objective function coefficients are computed via subproblems. These problems can be linear, mixed integer linear, (non-)convex nonlinear, or mixed integer nonlinear. However, the important property of the subproblems is that we can compute their exact global optimum quickly. The proposed technique will be illustrated solving a cutting problem with optimum nonlinear programming subproblems.  相似文献   

2.
In this paper, we propose a convergent Lagrangian and objective level cut method for computing exact solution to two classes of nonlinear integer programming problems: separable nonlinear integer programming and polynomial zero-one programming. The method exposes an optimal solution to the convex hull of a revised perturbation function by successively reshaping or re-confining the perturbation function. The objective level cut is used to eliminate the duality gap and thus to guarantee the convergence of the Lagrangian method on a revised domain. Computational results are reported for a variety of nonlinear integer programming problems and demonstrate that the proposed method is promising in solving medium-size nonlinear integer programming problems.  相似文献   

3.
Nonlinear integer programming problems with bounded feasible sets are considered. It is shown how the number of constraints in such problems can be reduced with the aid of an exact penalty function approach. This approach can be used to construct an equivalent unconstrained problem, or a problem with a constraint set which makes it easier to solve. The application of this approach to various nonlinear integer programming problems is discussed.  相似文献   

4.
In this paper we consider nonlinear integer optimization problems. Nonlinear integer programming has mainly been studied for special classes, such as convex and concave objective functions and polyhedral constraints. In this paper we follow an other approach which is not based on convexity or concavity. Studying geometric properties of the level sets and the feasible region, we identify cases in which an integer minimizer of a nonlinear program can be found by rounding (up or down) the coordinates of a solution to its continuous relaxation. We call this property rounding property. If it is satisfied, it enables us (for fixed dimension) to solve an integer programming problem in the same time complexity as its continuous relaxation. We also investigate the strong rounding property which allows rounding a solution to the continuous relaxation to the next integer solution and in turn yields that the integer version can be solved in the same time complexity as its continuous relaxation for arbitrary dimensions.  相似文献   

5.
凹整数规划的分枝定界解法   总被引:3,自引:0,他引:3  
凹整数规划是一类重要的非线性整数规划问题,也是在经济和管理中有着广泛应用的最优化问题.本文主要研究用分枝定界方法求解凹整数规划问题,这一方法的基本思想是对目标函数进行线性下逼近,然后用乘子搜索法求解连续松弛问题.数值结果表明,用这种分枝定界方法求解凹整数规划是有效的.  相似文献   

6.
1.IntroductionAlthoughthegenerallinearintegerprogrammingproblemisNP-hard,muchworkhasbeendevotedtoit(SeeNumhauserandWolsey[1988],Schrijver[1986]).Thesolutionmethodsincludethecuttingplane,theBranch-and-Bound,thedynamicprogrammingmethodsetc..However,thegeneralnonlinearintegerprogrammingproblemisdifficulttosolve.GareyandJohnson[1979]pointedoutthattheintegerprogrammingoverRewithalinearobjectivefunctionandquadraticconstraintsisundecidable.Soifanonlinearintegerprogrammingproblemishandled,itisalw…  相似文献   

7.
We consider maximin and minimax nonlinear mixed integer programming problems which are nonsymmetric in duality sense. Under weaker (pseudo-convex/pseudo-concave) assumptions, we show that the supremum infimum of the maximin problem is greater than or equal to the infimum supremum of the minimax problem. As a particular case, this result reduces to the weak duality theorem for minimax and symmetric dual nonlinear mixed integer programming problems. Further, this is used to generalize available results on minimax and symmetric duality in nonlinear mixed integer programming.  相似文献   

8.
We present a Lagrangean decomposition to study integer nonlinear programming problems. Solving the dual Lagrangean relaxation we have to obtain at each iteration the solution of a nonlinear programming with continuous variables and an integer linear programming. Decreasing iteratively the primal—dual gap we propose two algorithms to treat the integer nonlinear programming.This work was partially supported by CNPq and FINEP.  相似文献   

9.
The nonlinear knapsack problem, which has been widely studied in the OR literature, is a bounded nonlinear integer programming problem that maximizes a separable nondecreasing function subject to separable nondecreasing constraints. In this paper we develop a convergent Lagrangian and domain cut method for solving this kind of problems. The proposed method exploits the special structure of the problem by Lagrangian decomposition and dual search. The domain cut is used to eliminate the duality gap and thus to guarantee the finding of an optimal exact solution to the primal problem. The algorithm is first motivated and developed for singly constrained nonlinear knapsack problems and is then extended to multiply constrained nonlinear knapsack problems. Computational results are presented for a variety of medium- or large-size nonlinear knapsack problems. Comparison results with other existing methods are also reported.  相似文献   

10.
An Exact Solution Method for Reliability Optimization in Complex Systems   总被引:2,自引:0,他引:2  
Systems reliability plays an important role in systems design, operation and management. Systems reliability can be improved by adding redundant components or increasing the reliability levels of subsystems. Determination of the optimal amount of redundancy and reliability levels among various subsystems under limited resource constraints leads to a mixed-integer nonlinear programming problem. The continuous relaxation of this problem in a complex system is a nonconvex nonseparable optimization problem with certain monotone properties. In this paper, we propose a convexification method to solve this class of continuous relaxation problems. Combined with a branch-and-bound method, our solution scheme provides an efficient way to find an exact optimal solution to integer reliability optimization in complex systems. This research was partially supported by the Research Grants Council of Hong Kong, grants CUHK4056/98E, CUHK4214/01E and 2050252, and the National Natural Science Foundation of China under Grants 79970107 and 10271073.  相似文献   

11.
The paper gives a definition of the filled function for nonlinear integer programming. This definition is modified from that of the global convexized filled function for continuous global optimization. A filled function with only one parameter which satisfies this definition is presented. We also discuss the properties of the proposed function and give a filled function method to solve the nonlinear integer programming problem. The implementation of the algorithm on several test problems is reported with satisfactory numerical results.  相似文献   

12.
In this paper, we consider a general class of nonlinear mixed discrete programming problems. By introducing continuous variables to replace the discrete variables, the problem is first transformed into an equivalent nonlinear continuous optimization problem subject to original constraints and additional linear and quadratic constraints. Then, an exact penalty function is employed to construct a sequence of unconstrained optimization problems, each of which can be solved effectively by unconstrained optimization techniques, such as conjugate gradient or quasi-Newton methods. It is shown that any local optimal solution of the unconstrained optimization problem is a local optimal solution of the transformed nonlinear constrained continuous optimization problem when the penalty parameter is sufficiently large. Numerical experiments are carried out to test the efficiency of the proposed method.  相似文献   

13.
On the convergence of cross decomposition   总被引:2,自引:0,他引:2  
Cross decomposition is a recent method for mixed integer programming problems, exploiting simultaneously both the primal and the dual structure of the problem, thus combining the advantages of Dantzig—Wolfe decomposition and Benders decomposition. Finite convergence of the algorithm equipped with some simple convergence tests has been proved. Stronger convergence tests have been proposed, but not shown to yield finite convergence.In this paper cross decomposition is generalized and applied to linear programming problems, mixed integer programming problems and nonlinear programming problems (with and without linear parts). Using the stronger convergence tests finite exact convergence is shown in the first cases. Unbounded cases are discussed and also included in the convergence tests. The behaviour of the algorithm when parts of the constraint matrix are zero is also discussed. The cross decomposition procedure is generalized (by using generalized Benders decomposition) in order to enable the solution of nonlinear programming problems.  相似文献   

14.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

15.
We consider a class of knapsack problems that include setup costs for families of items. An individual item can be loaded into the knapsack only if a setup cost is incurred for the family to which it belongs. A mixed integer programming formulation for the problem is provided along with exact and heuristic solution methods. The exact algorithm uses cross decomposition. The proposed heuristic gives fast and tight bounds. In addition, a Benders decomposition algorithm is presented to solve the continuous relaxation of the problem. This method for solving the continuous relaxation can be used to improve the performance of a branch and bound algorithm for solving the integer problem. Computational performance of the algorithms are reported and compared to CPLEX.  相似文献   

16.
In this study, we consider the nadir points of multiobjective integer programming problems. We introduce new properties that restrict the possible locations of the nondominated points necessary for computing the nadir points. Based on these properties, we reduce the search space and propose an exact algorithm for finding the nadir point of multiobjective integer programming problems. We present an illustrative example on a three objective knapsack problem. We conduct computational experiments and compare the performances of two recent algorithms and the proposed algorithm.  相似文献   

17.
An effective continuous algorithm is proposed to find approximate solutions of NP-hardmax-cut problems.The algorithm relaxes the max-cut problem into a continuous nonlinearprogramming problem by replacing n discrete constraints in the original problem with onesingle continuous constraint.A feasible direction method is designed to solve the resultingnonlinear programming problem.The method employs only the gradient evaluations ofthe objective function,and no any matrix calculations and no line searches are required.This greatly reduces the calculation cost of the method,and is suitable for the solutionof large size max-cut problems.The convergence properties of the proposed method toKKT points of the nonlinear programming are analyzed.If the solution obtained by theproposed method is a global solution of the nonlinear programming problem,the solutionwill provide an upper bound on the max-cut value.Then an approximate solution to themax-cut problem is generated from the solution of the nonlinear programming and providesa lower bound on the max-cut value.Numerical experiments and comparisons on somemax-cut test problems(small and large size)show that the proposed algorithm is efficientto get the exact solutions for all small test problems and well satisfied solutions for mostof the large size test problems with less calculation costs.  相似文献   

18.
In this paper, we consider a class of nonlinear dynamic systems with terminal state and continuous inequality constraints. Our aim is to design an optimal feedback controller that minimizes total system cost and ensures satisfaction of all constraints. We first formulate this problem as a semi-infinite optimization problem. We then show that by using a new exact penalty approach, this semi-infinite optimization problem can be converted into a sequence of nonlinear programming problems, each of which can be solved using standard gradient-based optimization methods. We conclude the paper by discussing applications of our work to glider control.  相似文献   

19.
In this paper, we consider the box constrained nonlinear integer programming problem. We present an auxiliary function, which has the same discrete global minimizers as the problem. The minimization of the function using a discrete local search method can escape successfully from previously converged discrete local minimizers by taking increasing values of a parameter. We propose an algorithm to find a global minimizer of the box constrained nonlinear integer programming problem. The algorithm minimizes the auxiliary function from random initial points. We prove that the algorithm can converge asymptotically with probability one. Numerical experiments on a set of test problems show that the algorithm is efficient and robust.  相似文献   

20.
An algorithmic framework for convex mixed integer nonlinear programs   总被引:3,自引:0,他引:3  
This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent years. Wishing to exploit expertise in these areas as well as on previous work in mixed integer nonlinear programming, this work represents the first step in an ongoing and ambitious project within an open-source environment. COIN-OR is our chosen environment for the development of the optimization software. A class of hybrid algorithms, of which branch-and-bound and polyhedral outer approximation are the two extreme cases, are proposed and implemented. Computational results that demonstrate the effectiveness of this framework are reported. Both the library of mixed integer nonlinear problems that exhibit convex continuous relaxations, on which the experiments are carried out, and a version of the software used are publicly available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号