首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

2.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

3.
Let T be a C0–contraction on a separable Hilbert space. We assume that IH − T*T is compact. For a function f holomorphic in the unit disk \mathbbD{\mathbb{D}} and continuous on [`(\mathbbD)]\overline{{\mathbb{D}}}, we show that f(T) is compact if and only if f vanishes on s(T)?\mathbbT\sigma(T)\cap{\mathbb{T}}, where σ(T) is the spectrum of T and \mathbbT{\mathbb{T}} the unit circle. If f is just a bounded holomorphic function on \mathbbD{\mathbb{D}}, we prove that f(T) is compact if and only if limn? ¥||Tnf(T)|| = 0\lim\limits_{n\rightarrow \infty}\|T^{n}f(T)\| = 0.  相似文献   

4.
Fourier series are considered on the one-dimensional torus for the space of periodic distributions that are the distributional derivative of a continuous function. This space of distributions is denoted Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}) and is a Banach space under the Alexiewicz norm, ||f||\mathbbT=sup|I| £ 2pI f|\|f\|_{\mathbb{T}}=\sup_{|I|\leq2\pi}|\int_{I} f|, the supremum being taken over intervals of length not exceeding 2π. It contains the periodic functions integrable in the sense of Lebesgue and Henstock–Kurzweil. Many of the properties of L 1 Fourier series continue to hold for this larger space, with the L 1 norm replaced by the Alexiewicz norm. The Riemann–Lebesgue lemma takes the form [^(f)](n)=o(n)\hat{f}(n)=o(n) as |n|→∞. The convolution is defined for f ? Ac(\mathbbT)f\in{\mathcal{A}}_{c}(\mathbb{T}) and g a periodic function of bounded variation. The convolution commutes with translations and is commutative and associative. There is the estimate ||f*g|| £ ||f||\mathbbT ||g||BV\|f\ast g\|_{\infty}\leq\|f\|_{\mathbb{T}} \|g\|_{\mathcal{BV}}. For g ? L1(\mathbbT)g\in L^{1}(\mathbb{T}), ||f*g||\mathbbT £ ||f||\mathbb T ||g||1\|f\ast g\|_{\mathbb{T}}\leq\|f\|_{\mathbb {T}} \|g\|_{1}. As well, [^(f*g)](n)=[^(f)](n) [^(g)](n)\widehat{f\ast g}(n)=\hat{f}(n) \hat{g}(n). There are versions of the Salem–Zygmund–Rudin–Cohen factorization theorem, Fejér’s lemma and the Parseval equality. The trigonometric polynomials are dense in Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}). The convolution of f with a sequence of summability kernels converges to f in the Alexiewicz norm. Let D n be the Dirichlet kernel and let f ? L1(\mathbbT)f\in L^{1}(\mathbb{T}). Then ||Dn*f-f||\mathbbT?0\|D_{n}\ast f-f\|_{\mathbb{T}}\to0 as n→∞. Fourier coefficients of functions of bounded variation are characterized. The Appendix contains a type of Fubini theorem.  相似文献   

5.
If b is an inner function, then composition with b induces an endomorphism, β, of L(\mathbbT){L^\infty({\mathbb{T}})} that leaves H(\mathbbT){H^\infty({\mathbb{T}})} invariant. We investigate the structure of the endomorphisms of B(L2(\mathbbT)){B(L^2({\mathbb{T}}))} and B(H2(\mathbbT)){B(H^2({\mathbb{T}}))} that implement β through the representations of L(\mathbbT){L^\infty({\mathbb{T}})} and H(\mathbbT){H^\infty({\mathbb{T}})} in terms of multiplication operators on L2(\mathbbT){L^2({\mathbb{T}})} and H2(\mathbbT){H^2({\mathbb{T}})} . Our analysis, which is based on work of Rochberg and McDonald, will wind its way through the theory of composition operators on spaces of analytic functions to recent work on Cuntz families of isometries and Hilbert C*-modules.  相似文献   

6.
Let f (x 1, . . . , x s ) be a regular indefinite integral quadratic form, and t an integer. Denote by V the affine quadric {x : f (x) = t}, and by V(\mathbb P){V(\mathbb {P})} the set of x ? V{{\bf x}\in V} whose coordinates are simultaneously prime. It is proved that, under suitable conditions, V(\mathbbP){V(\mathbb{P})} is Zariski dense in V as long as s ≥ 10.  相似文献   

7.
The aim of this article is to prove the following theorem. Theorem Let p be in (1,∞), ℍ n,m a group of Heisenberg type, ℛ the vector of the Riesz transforms on n,m . There exists a constant C p independent of n and m such that for every fL p (ℍ n,m )
Cp-1e-0.45m||f||Lp(\mathbbHn,m) £ |||Rf|||Lp(\mathbbHn,m)Cpe0.45m||f||Lp(\mathbbHn,m).C_p^{-1}e^{-0.45m}\|f\|_{L^p(\mathbb{H}_{n,m})}\leq\||\mathcal{R}f|\|_{L^p(\mathbb{H}_{n,m})}\leq C_pe^{0.45m}\|f\|_{L^p(\mathbb{H}_{n,m})}.  相似文献   

8.
Harold Widom proved in 1966 that the spectrum of a Toeplitz operator T(a) acting on the Hardy space Hp(\mathbbT)H^p({\mathbb{T}}) over the unit circle \mathbbT{\mathbb{T}} is a connected subset of the complex plane for every bounded measurable symbol a and 1 < p < ∞. In 1972, Ronald Douglas established the connectedness of the essential spectrum of T(a) on H2(\mathbbT)H^2({\mathbb{T}}). We show that, as was suspected, these results remain valid in the setting of Hardy spaces Hp(Γ,w), 1 < p < ∞, with general Muckenhoupt weights w over arbitrary Carleson curves Γ.  相似文献   

9.
We study the well-posedness of the fractional differential equations with infinite delay (P 2): Da u(t)=Au(t)+òt-¥a(t-s)Au(s)ds + f(t), (0 £ t £ 2p){D^\alpha u(t)=Au(t)+\int^{t}_{-\infty}a(t-s)Au(s)ds + f(t), (0\leq t \leq2\pi)}, where A is a closed operator in a Banach space ${X, \alpha > 0, a\in {L}^1(\mathbb{R}_+)}${X, \alpha > 0, a\in {L}^1(\mathbb{R}_+)} and f is an X-valued function. Under suitable assumptions on the parameter α and the Laplace transform of a, we completely characterize the well-posedness of (P 2) on Lebesgue-Bochner spaces Lp(\mathbbT, X){L^p(\mathbb{T}, X)} and periodic Besov spaces B p,qs(\mathbbT, X){{B} _{p,q}^s(\mathbb{T}, X)} .  相似文献   

10.
We study necessary and sufficient conditions for embeddings of Besov and Triebel-Lizorkin spaces of generalized smoothness B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), respectively, into generalized H?lder spaces L¥,rm(·)( \mathbb Rn)\Lambda_{\infty,r}^{\mu(\cdot)}(\ensuremath {\ensuremath {\mathbb {R}}^{n}}). In particular, we are able to characterize optimal embeddings for this class of spaces provided q>1. These results improve the embedding assertions given by the continuity envelopes of B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), which were obtained recently solving an open problem of D.D. Haroske in the classical setting.  相似文献   

11.
Every compact smooth manifold M is diffeomorphic to the set X(\mathbbR){X(\mathbb{R})} of real points of a nonsingular projective real algebraic variety X, which is called an algebraic model of M. Each algebraic cycle of codimension k on the complex variety X\mathbbC=X×\mathbbR\mathbbC{X_{\mathbb{C}}=X\times_{\mathbb{R}}\mathbb{C}} determines a cohomology class in H2k(X(\mathbbR);\mathbbD){H^{2k}(X(\mathbb{R});\mathbb{D})} , where \mathbbD{\mathbb{D}} denotes \mathbbZ{\mathbb{Z}} or \mathbbQ{\mathbb{Q}} . We investigate the behavior of such cohomology classes as X runs through the class of algebraic models of M.  相似文献   

12.
We establish the inverse conjecture for the Gowers norm over finite fields, which asserts (roughly speaking) that if a bounded function f : V ? \mathbbC{f : V \rightarrow \mathbb{C}} on a finite-dimensional vector space V over a finite field \mathbbF{\mathbb{F}} has large Gowers uniformity norm ||f||Us+1(V){{\parallel{f}\parallel_{U^{s+1}(V)}}} , then there exists a (non-classical) polynomial P: V ? \mathbbT{P: V \rightarrow \mathbb{T}} of degree at most s such that f correlates with the phase e(P) = e iP . This conjecture had already been established in the “high characteristic case”, when the characteristic of \mathbbF{\mathbb{F}} is at least as large as s. Our proof relies on the weak form of the inverse conjecture established earlier by the authors and Bergelson [3], together with new results on the structure and equidistribution of non-classical polynomials, in the spirit of the work of Green and the first author [22] and of Kaufman and Lovett [28].  相似文献   

13.
A Toeplitz operator TfT_\phi with symbol f\phi in L(\mathbbD)L^{\infty}({\mathbb{D}}) on the Bergman space A2(\mathbbD)A^{2}({\mathbb{D}}), where \mathbbD\mathbb{D} denotes the open unit disc, is radial if f(z) = f(|z|)\phi(z) = \phi(|z|) a.e. on \mathbbD\mathbb{D}. In this paper, we consider the numerical ranges of such operators. It is shown that all finite line segments, convex hulls of analytic images of \mathbbD\mathbb{D} and closed convex polygonal regions in the plane are the numerical ranges of radial Toeplitz operators. On the other hand, Toeplitz operators TfT_\phi with f\phi harmonic on \mathbbD\mathbb{D} and continuous on [`(\mathbbD)]{\overline{\mathbb{D}}} and radial Toeplitz operators are convexoid, but certain compact quasinilpotent Toeplitz operators are not.  相似文献   

14.
Reflection equation algebras and related Uq(\mathfrak g){U{_q}(\mathfrak g)} -comodule algebras appear in various constructions of quantum homogeneous spaces and can be obtained via transmutation or equivalently via twisting by a cocycle. In this paper we investigate algebraic and representation theoretic properties of such so called ‘covariantized’ algebras, in particular concerning their centres, invariants, and characters. The locally finite part Fl(Uq (\mathfrak g)){F_l(U{_q} (\mathfrak g))} of Uq(\mathfrak g){U{_q}(\mathfrak g)} with respect to the left adjoint action is a special example of a covariantized algebra. Generalising Noumi’s construction of quantum symmetric pairs we define a coideal subalgebra B f of Uq(\mathfrak g){U{_q}(\mathfrak g)} for each character f of a covariantized algebra. We show that for any character f of Fl(Uq(\mathfrak g)){F_l(U{_q}(\mathfrak g))} the centre Z(B f ) canonically contains the representation ring Rep(\mathfrak g){{\rm Rep}(\mathfrak g)} of the semisimple Lie algebra \mathfrak g{\mathfrak g} . We show moreover that for \mathfrak g = \mathfrak sln(\mathbb C){\mathfrak g = {\mathfrak sl}_n(\mathbb C)} such characters can be constructed from any invertible solution of the reflection equation and hence we obtain many new explicit realisations of Rep(\mathfrak sln(\mathbb C)){{\rm Rep}({\mathfrak sl}_n(\mathbb C))} inside Uq(\mathfrak sln(\mathbb C)){U_q({\mathfrak sl}_n(\mathbb C))} . As an example we discuss the solutions of the reflection equation corresponding to the Grassmannian manifold Gr(m,2m) of m-dimensional subspaces in \mathbb C2m{{\mathbb C}^{2m}}.  相似文献   

15.
In this paper we show that the flow map of the Benjamin-Ono equation on the line is weakly continuous in L 2(?), using “local smoothing” estimates. L 2(?) is believed to be a borderline space for the local well-posedness theory of this equation. In the periodic case, Molinet (Math. Ann. 337, 353–383, 2007) has recently proved that the flow map of the Benjamin-Ono equation is not weakly continuous in $L^{2}(\mathbb{T})In this paper we show that the flow map of the Benjamin-Ono equation on the line is weakly continuous in L 2(ℝ), using “local smoothing” estimates. L 2(ℝ) is believed to be a borderline space for the local well-posedness theory of this equation. In the periodic case, Molinet (Math. Ann. 337, 353–383, 2007) has recently proved that the flow map of the Benjamin-Ono equation is not weakly continuous in L2(\mathbbT)L^{2}(\mathbb{T}). Our results are in line with previous work on the cubic nonlinear Schr?dinger equation, where Goubet and Molinet (Nonlinear Anal. 71, 317–320, 2009) showed weak continuity in L 2(ℝ) and Molinet (Am. J. Math. 130, 635–683, 2008) showed lack of weak continuity in L2(\mathbbT)L^{2}(\mathbb{T}).  相似文献   

16.
In this paper, we consider massless Dirac fields propagating in the outer region of de Sitter–Reissner–Nordstr?m black holes. We show that the metric of such black holes is uniquely determined by the partial knowledge of the corresponding scattering matrix S(λ) at a fixed energy λ ≠ 0. More precisely, we consider the partial wave scattering matrices S(λ, n) (here λ ≠ 0 is the fixed energy and n ? \mathbbN*{n \in \mathbb{N}^{*}} denotes the angular momentum) defined as the restrictions of the full scattering matrix on a well chosen basis of spin-weighted spherical harmonics. We prove that the mass M, the square of the charge Q 2 and the cosmological constant Λ of a dS-RN black hole (and thus its metric) can be uniquely determined from the knowledge of either the transmission coefficients T(λ, n), or the reflexion coefficients R(λ, n) (resp. L(λ, n)), for all n ? L{n \in {\mathcal{L}}} where L{\mathcal{L}} is a subset of \mathbbN*{\mathbb{N}^{*}} that satisfies the Müntz condition ?n ? L\frac1n = +¥{\sum_{n \in{\mathcal{L}}}\frac{1}{n} = +\infty} . Our main tool consists in complexifying the angular momentum n and in studying the analytic properties of the “unphysical” scattering matrix S(λ, z) in the complex variable z. We show, in particular, that the quantities \frac1T(l,z){\frac{1}{T(\lambda,z)}}, \fracR(l,z)T(l,z){\frac{R(\lambda,z)}{T(\lambda,z)}} and \fracL(l,z)T(l,z){\frac{L(\lambda,z)}{T(\lambda,z)}} belong to the Nevanlinna class in the region ${\{z \in \mathbb{C}, Re(z) > 0 \}}${\{z \in \mathbb{C}, Re(z) > 0 \}} for which we have analytic uniqueness theorems at our disposal. Eventually, as a by-product of our method, we obtain reconstruction formulae for the surface gravities of the event and cosmological horizons of the black hole which have an important physical meaning in the Hawking effect.  相似文献   

17.
When \mathbbK{\mathbb{K}} is an arbitrary field, we study the affine automorphisms of Mn(\mathbbK){{\rm M}_n(\mathbb{K})} that stabilize GLn(\mathbbK){{\rm GL}_n(\mathbb{K})}. Using a theorem of Dieudonné on maximal affine subspaces of singular matrices, this is easily reduced to the known case of linear preservers when n > 2 or # ${\mathbb{K} > 2}${\mathbb{K} > 2}. We include a short new proof of the more general Flanders theorem for affine subspaces of Mp,q(\mathbbK){{\rm M}_{p,q}(\mathbb{K})} with bounded rank. We also find that the group of affine transformations of M2(\mathbbF2){{\rm M}_2(\mathbb{F}_2)} that stabilize GL2(\mathbbF2){{\rm GL}_2(\mathbb{F}_2)} does not consist solely of linear maps. Using the theory of quadratic forms over \mathbbF2{\mathbb{F}_2}, we construct explicit isomorphisms between it, the symplectic group Sp4(\mathbbF2){{\rm Sp}_4(\mathbb{F}_2)} and the symmetric group \mathfrakS6{\mathfrak{S}_6}.  相似文献   

18.
Let L=?Δ+|ξ|2 be the harmonic oscillator on $\mathbb{R}^{n}Let L=−Δ+|ξ|2 be the harmonic oscillator on \mathbbRn\mathbb{R}^{n} , with the associated Riesz transforms R2j−1=(∂/∂ξj)L−1/2,R2jjL−1/2. We give a shorter proof of a recent result of Harboure, de Rosa, Segovia, Torrea: For 1<p<∞ and a dimension free constant Cp,
||(?k=12n|Rk(f)|2)1/2||Lp(\mathbbRn,dx)\leqslant Cp||f||Lp(\mathbbRn,dx).\bigg\Vert \bigg(\sum_{k=1}^{2n}\vert R_{k}(f)\vert ^{2}\bigg)^{{1}/{2}}\bigg\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}\leqslant C_{p}\Vert f\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}.  相似文献   

19.
For open discrete mappings f:D\{ b } ? \mathbbR3 f:D\backslash \left\{ b \right\} \to {\mathbb{R}^3} of a domain D ì \mathbbR3 D \subset {\mathbb{R}^3} satisfying relatively general geometric conditions in D \ {b} and having an essential singularity at a point b ? \mathbbR3 b \in {\mathbb{R}^3} , we prove the following statement: Let a point y 0 belong to [`(\mathbbR3)] \f( D\{ b } ) \overline {{\mathbb{R}^3}} \backslash f\left( {D\backslash \left\{ b \right\}} \right) and let the inner dilatation K I (x, f) and outer dilatation K O (x, f) of the mapping f at the point x satisfy certain conditions. Let B f denote the set of branch points of the mapping f. Then, for an arbitrary neighborhood V of the point y 0, the set Vf(B f ) cannot be contained in a set A such that g(A) = I, where I = { t ? \mathbbR:| t | < 1 } I = \left\{ {t \in \mathbb{R}:\left| t \right| < 1} \right\} and g:U ? \mathbbRn g:U \to {\mathbb{R}^n} is a quasiconformal mapping of a domain U ì \mathbbRn U \subset {\mathbb{R}^n} such that A ⊂ U.  相似文献   

20.
Let Ω i and Ω o be two bounded open subsets of \mathbbRn{{\mathbb{R}}^{n}} containing 0. Let G i be a (nonlinear) map from ?Wi×\mathbbRn{\partial\Omega^{i}\times {\mathbb{R}}^{n}} to \mathbbRn{{\mathbb{R}}^{n}} . Let a o be a map from ∂Ω o to the set Mn(\mathbbR){M_{n}({\mathbb{R}})} of n × n matrices with real entries. Let g be a function from ∂Ω o to \mathbbRn{{\mathbb{R}}^{n}} . Let γ be a positive valued function defined on a right neighborhood of 0 in the real line. Let T be a map from ]1-(2/n),+¥[×Mn(\mathbbR){]1-(2/n),+\infty[\times M_{n}({\mathbb{R}})} to Mn(\mathbbR){M_{n}({\mathbb{R}})} . Then we consider the problem
$\left\{ {ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \right.$\left\{ \begin{array}{ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \end{array} \right.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号