首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micro and nanotubes have found major application in fluidic systems as channels for conveying fluid. In some micro and nanofluidic applications such as drug delivery, a transverse magnetic field can be used to guide the fluid flow by generating an axial force in the flow direction. An important issue in the design of micro and nanofluidic systems is the structural vibration caused by the fluid flow. In the current study, we investigate the effect of transverse magnetic field on the vibration of cantilever micro and nanotubes conveying fluid by considering the small size effects. We couple the nonlocal Euler–Bernoulli beam model with Navier–Stokes theory to determine a fluid structure interaction (FSI) model for the vibration analysis of the system. We modify the FSI governing equation by driving a velocity correction factor to consider the effect of transverse magnetic field on the fluid flow’s pattern through the tube. Then, we use the Galerkin’s method to obtain the frequency diagrams for the instability analysis of the system. We show that the transverse magnetic field can have a substantial effect on the dynamics of tube conveying fluid by increasing the system’s natural frequencies and critical flow velocity which contributes to the flutter instability. We also discover that although the transverse magnetic field plays a crucial role on dynamics of microstructures, its effect on the dynamics of nanotubes is not significant and can be ignored.  相似文献   

2.
IntroductionFluidinducedvibrationexistsinmanyengineeringfields.Thevibrationandstabilityofpipeconveyingfluidisatypicalexample.Manyscholarsathomeandabroadhavealwaysbeeninterestedinthissubjectandmadealotofstudiesofit.Particularlyduringrecentdecades,somere…  相似文献   

3.
Carbon nanotubes are finding significant application to nanofluidic devices. This work studies the influence of internal moving fluid on free vibration and flow-induced flutter instability of cantilever carbon nanotubes based on a continuum elastic model. Since the flow-induced vibration of cantilever pipes is non-conservative in nature, cantilever carbon nanotubes conveying fluid are damped with decaying amplitude for flow velocity below a certain critical value. Beyond this critical flow velocity, flutter instability occurs and vibration becomes amplified with growing amplitude. Our results indicate that internal moving fluid substantially affects vibrational frequencies and the decaying rate of amplitude especially for longer cantilever carbon nanotubes of larger innermost radius at higher flow velocity, and the critical flow velocity for flutter instability in some cases may fall within the practical range. On the other hand, a moderately stiff surrounding elastic medium (such as polymers) can significantly suppress the effect of internal moving fluid on vibrational frequencies and suppress or eliminate flutter instability within the practical range of flow velocity.  相似文献   

4.
李明 《固体力学学报》2017,38(5):426-432
以非局部弹性理论为基础,采用欧拉-伯努利梁模型,考虑管型区域内滑移边界条件以及碳纳米管的小尺度效应,应用哈密顿原理获得了温度场与轴向磁场共同作用下的输流单层固支碳纳米管(SWCNT)的振动控制方程以及边界条件,依靠微分变换法(DTM法)对此高阶偏微分方程进行求解,通过数值计算研究了多场中单层固支输流碳纳米管的振动与失稳问题。结果表明:温度场、轴向磁场强度、Knudsen数及小尺度参数都会对系统振动频率以及失稳临界流速产生影响。  相似文献   

5.

A large set of 2D random arrays of circular cylinders is generated to perform a statistical study on rarefied gas flow through micro-porous media. The flow regimes in this work lie for Knudsen numbers (Kn) ranging from the continuum to the transition regimes. Arrays are built by randomly placing cylinders with constant diameter with a uniform distribution without overlapping, and are generated for three target porosities. Fluid flow is assumed to be incompressible and isothermal. A modified lattice Boltzmann model is adopted to account for discrete effects, with slip-velocity boundary conditions and a Kn-dependent multi-relaxation time collision operator. The apparent permeability is modeled with Darcy’s law with a Klinkenberg-type relationship and compared with existing correlations. Velocity fields highlight the increasing contribution of fluid flow through small pores with increasing Kn. Numerical results show that porous media randomness leads to an uncertainty on rarefied gas permeability calculation despite the same structural characteristics and may not strictly follow a specific correlation. The influence of a local collision operator based on a local Kn instead of a global one in the numerical model is also studied. Results show that the permeability in rarefied regimes undergoes significant deviation when applying the local collision operator compared to the global one. These differences could result from a more accurate capture of the pore-scale behavior with a local Kn. Thus, it emphasizes the sensitivity of the model and the apparent permeability calculation to the appropriate definition of Kn.

  相似文献   

6.
IntroductionItiswell_knownthatsimplysupportedpipesconveyingfluidarenamedasgyroscopiccon servativesystembecauseitsenergyattheexitisequaltothatattheenter[1].Thissystemwasstudiedbysomescholarsathomeandabroad .Paidoussis[2 ]studiedtheproblemofdynamicsandstabi…  相似文献   

7.
以非局部弹性理论为基础,采用欧拉-伯努利梁模型,考虑碳纳米管的小尺度效应,应用哈密顿原理获得了温度场作用下的输流悬臂单层碳纳米管(SWCNT)的振动控制方程以及边界条件,依靠微分变换法(DTM法)对此高阶偏微分方程进行求解,通过数值计算研究了温度场中悬臂单层输流碳纳米管的振动与颤振失稳问题。结果表明:管内流体流速、温度场中温度变化情况与小尺度参数都会对系统振动频率以及颤振失稳临界流速产生影响。其中,小尺度效应将会降低悬臂输流系统的稳定性,使系统更为柔软;而高温场与低温场对系统动态失稳的影响不同,低温场中随温度变化值的增加,系统的稳定性提高;高温场这一作用效果恰好与之相反。  相似文献   

8.
Based on the differential constitutive relationship of linear viscoelastic, material, a solid-liquid coupling vibration equation for viscoelastic pipe conveying fluid is derived by the D'Alembert's principle. The critical flow velocities and natural frequencies of the cantilever pipe conveying fluid with the Kelvin model (flutter instability) are calculated with the modified finite difference method in the form of the recurrence formula. The curves between the complex frequencies of the first, second and third mode and flow velocity of the pipe are plotted. On the basis of the numerical, calculation results, the dynamic behaviors and stability of the pipe are discussed. It should be pointed out that the delay time of viscoelastic material with the Kelvin model has a remarkable effect on the dynamic characteristics and stability behaviors of the cantilevered pipe conveying fluid, which is a gyroscopic non-conservative system.  相似文献   

9.
Javadi  M.  Noorian  M. A.  Irani  S. 《Meccanica》2019,54(3):399-410

Divergence and flutter instabilities of pipes conveying fluid with fractional viscoelastic model has been investigated in the present work. Attention is concentrated on the boundaries of the stability. Based on the Euler–Bernoulli beam theory for structural dynamics, viscoelastic fractional model for damping and, plug flow model for fluid flow, equation of motion has been derived. The effects of gravity, and distributed follower forces are also considered. By transferring the equation of motion to the Laplace domain and using the Galerkin method, the characteristic equations are obtained. By solving the eigenvalue problem, frequencies and dampings of the system have been obtained versus flow velocity. Some numerical test cases have been studied with viscoelastic fractional model and the effect of the fractional derivative order and the retardation time is investigated for various boundary conditions.

  相似文献   

10.
The aim of the study described in this paper is to investigate the two-dimensional (2-D) and three-dimensional (3-D) flutter of cantilevered pipes conveying fluid. Specifically, by means of a complete set of non-linear equations of motion, two questions are addressed: (i) whether for a system losing stability by either 2-D or 3-D flutter the motion remains of the same type as the flow velocity is increased substantially beyond the Hopf bifurcation precipitating the flutter; (ii) whether the bifurcational behaviour of a horizontal system and a vertical one (sufficiently long for gravity to have an important effect on the dynamics) are substantially similar. Stability maps and tables are used to delineate areas in a flow velocity versus mass parameter plane where 2-D or 3-D motions occur, and limit-cycle motions are illustrated by phase-plane plots, PSDs and cross-sectional diagrams showing whether the motion is circular (3-D) or planar (2-D).  相似文献   

11.
This paper investigates the dynamics of cantilevered CNTs conveying fluid in longitudinal magnetic field and presents the possibility of controlling/tuning the stability of the CNT system with the aid of magnetic field. The slender CNT is treated as an Euler-Bernoulli beam. Based on nonlocal elasticity theory, the equation of motion with consideration of magnetic field effect is developed. This partial differential equation is then discretized using the differential quadrature method(DQM). Numerical results show that the nonlocal small-scale parameter makes the fluid-conveying CNT more flexible and can shift the unstable mode in which flutter instability occurs first at sufficiently high flow velocity from one to another. More importantly,the addition of a longitudinal magnetic field leads to much richer dynamical behaviors of the CNT system. Indeed, the presence of longitudinal magnetic field can significantly affect the evolution of natural frequency of the dynamical system when the flow velocity is successively increased.With increasing magnetic field parameter, it is shown that the CNT system behaves stiffer and hence the critical flow velocity becomes higher. It is of particular interest that when the magnetic field parameter is equal to or larger than the flow velocity, the cantilevered CNT conveying fluid becomes unconditionally stable, indicating that the dynamic stability of the system can be controlled due to the presence of a longitudinal magnetic field.  相似文献   

12.
Stability analysis of viscoelastic curved pipes conveying fluid   总被引:1,自引:0,他引:1  
Based on the Hamilton' s principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.  相似文献   

13.
In this work, the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model, with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity. Four key parameters, including the flow velocity, the mass ratio, the gravity parameter, and the inclination angle between the pipe length and the gravity direction, are considered to affect the static and dynamic behaviors of the soft pipe. The stability analyses show that, provided that the inclination angle is not equal to π, the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value. As the inclination angle is equal to π, the pipe experiences, in turn,buckling instability, regaining stability, and flutter instability with the increase in the flow velocity. Interestingly, the stability of the pipe can be either enhanced or weakened by varying the gravity parameter, mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis, it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations. Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.  相似文献   

14.
本文主要研究通过调控集中质量对悬臂输流管稳定性和振动模态特性的影响规律,为输流管动力学性能的可控性提供理论指导和实验依据. 首先基于扩展的哈密顿原理,建立了含集中质量悬臂输流管的非线性动力学理论模型. 基于线性动力学特性分析,研究发现集中质量沿管道轴向位置变化对输流管发生颤振失稳的临界流速有重要影响.并通过伽辽金前四阶模态截断处理线性矩阵方程式,定性地分析了集中质量位置与质量比的变化对于输流管稳定性影响的变化.实验结果表明, 输流管的颤振失稳模态随集中质量位置的变化发生了转迁. 此外,基于动力学理论分析, 发现集中质量比值对失稳临界流速也有重要的影响,且主要取决于集中质量的安装位置. 基于非线性特性,进一步分析了集中质量对输流管振动幅值的影响. 实验和理论研究发现,集中质量位置从固定端向自由端变化时, 输流管振幅表现出先增大后减小趋势,且振动模态也从二阶转迁到三阶.本研究有望为输流管振动驱动应用提供理论支撑与指导意义.  相似文献   

15.
含集中质量悬臂输流管的稳定性与模态演化特性研究   总被引:2,自引:0,他引:2  
易浩然  周坤  代胡亮  王琳  倪樵 《力学学报》2020,52(6):1800-1810
本文主要研究通过调控集中质量对悬臂输流管稳定性和振动模态特性的影响规律,为输流管动力学性能的可控性提供理论指导和实验依据. 首先基于扩展的哈密顿原理,建立了含集中质量悬臂输流管的非线性动力学理论模型. 基于线性动力学特性分析,研究发现集中质量沿管道轴向位置变化对输流管发生颤振失稳的临界流速有重要影响.并通过伽辽金前四阶模态截断处理线性矩阵方程式,定性地分析了集中质量位置与质量比的变化对于输流管稳定性影响的变化.实验结果表明, 输流管的颤振失稳模态随集中质量位置的变化发生了转迁. 此外,基于动力学理论分析, 发现集中质量比值对失稳临界流速也有重要的影响,且主要取决于集中质量的安装位置. 基于非线性特性,进一步分析了集中质量对输流管振动幅值的影响. 实验和理论研究发现,集中质量位置从固定端向自由端变化时, 输流管振幅表现出先增大后减小趋势,且振动模态也从二阶转迁到三阶.本研究有望为输流管振动驱动应用提供理论支撑与指导意义.   相似文献   

16.
We develop a new computational model of the linear fluid–structure interaction of a cantilevered flexible plate with an ideal flow in a channel. The system equation is solved via numerical simulations that capture transients and allow the spatial variation of the flow–structure interaction on the plate to be studied in detail. Alternatively, but neglecting wake effects, we are able to extract directly the system eigenvalues to make global predictions of the system behaviour in the infinite-time limit. We use these complementary approaches to conduct a detailed study of the fluid–structure system. When the channel walls are effectively absent, predictions of the critical velocity show good agreement with those of other published work. We elucidate the single-mode flutter mechanism that dominates the response of short plates and show that the principal region of irreversible energy transfer from fluid to structure occurs over the middle portion of the plate. A different mechanism, modal-coalescence flutter, is shown to cause the destabilisation of long plates with its energy transfer occurring closer to the trailing edge of the plate. This mechanism is shown to allow a continuous change to higher-order modes of instability as the plate length is increased. We then show how the system response is modified by the inclusion of channel walls placed symmetrically above and below the flexible plate, the effect of unsteady vorticity shed at the trailing edge of the plate, and the effect of a rigid surface placed upstream of the flexible plate. Finally, we apply the modelling techniques in a brief study of upper-airway dynamics wherein soft-palate flutter is considered to be the source of snoring noises. In doing so, we show how a time-varying mean flow influences the type of instability observed as flow speed is increased and demonstrate how localised stiffening can be used to control instability of the flexible plate.  相似文献   

17.
Askarian  A. R.  Abtahi  H.  Firouz-Abadi  R. D. 《Meccanica》2019,54(11-12):1847-1868

In this paper, numerical investigation of the statical and dynamical stability of aligned and misaligned viscoelastic cantilevered beam is performed with a terminal nozzle in the presence of gravity in two cases: (1) effect of fluid velocity on the flutter boundary of beam conveying fluid and (2) effect of gravity on the buckling boundary of beam conveying fluid. The beam is assumed to have a large width-to-thickness ratio, so the out-of-plane bending rigidity is far higher than the in-plane bending and torsional rigidities. Gravity vector is considered in the vertical direction. Thus, deflection of the beam because of the gravity effect couples the in-plane bending and torsional equations. The beam is modeled by Euler–Bernoulli beam theory, with the flow-induced inertia, Coriolis and centrifugal forces along the beam considered as a distributed load along the beam. Furthermore, the end nozzle is regarded as a lumped mass and modeled as a follower axial force. The extended Hamilton’s principle and the Galerkin method are utilized to derive the bending–torsional equations of motion. The coupled equations of motion are solved as eigenvalue problems. Also, several cases are examined to study the impact of gravity, beam inclination angle, mass ratio, nozzle aspect ratio, bending-to-bending rigidity ratio and bending-to-torsional rigidity ratio on flutter and buckling margin of the system.

  相似文献   

18.
In this paper, we present a new method for simulating the motion of a disperse particle phase in a carrier gas through porous media. We assume a sufficiently dilute particle‐laden flow and compute, independently of the disperse phase, the steady laminar fluid velocity using the immersed boundary method. Given the velocity of the carrier gas, the equations of motion for the particles experiencing the Stokes drag force are solved to determine their trajectories. The ‘no‐slip consistent’ particle tracking algorithm avoids possible numerical filtration of very small particles due to the nonzero velocity field at the solid–fluid interface introduced by the immersed boundary method. This physically consistent tracking allows a reliable estimation of the filtration efficiency of porous filters due to inertial impaction. We illustrate and test our new approach for model porous media consisting of a structured array of aligned rectangular fibers, arranged in line and staggered. In the staggered geometry, the effect of the residual velocity at the solid–fluid interface is significant for particles with low inertia. Without adopting the developed no‐slip consistent numerical method, an artificial numerical filtration is observed, which becomes dominant for small enough particles. For both the in line and the staggered geometries, the filtration rate depends quite strongly and non monotonically on the particle inertia. This is expressed most clearly in the staggered arrangement in which a very strong increase in the filtration efficiency is observed at a well‐defined critical droplet size, corresponding to a qualitative change in the dominant particle paths in the porous medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A mathematical formulation is proposed to investigate the nonlinear flow-induced dynamic characteristics of a cantilevered pipe conveying fluid from macro to micro scale. The model is developed by using the extended Hamilton's principle in conjunction with the inextensibility condition and laminar and turbulent flow profiles as well as modified couple stress theory. The current model is capable of recovering the classical model of cantilevered pipe conveying fluid by neglecting the couple stress effect. The governing equation of motion is presented in dimensionless form in a convenient and usable manner. To solve the problem at hand, the integro-partial-differential equation of motion is discretized into a set of ordinary differential equations via Galerkin method. Afterward, a Runge–Kutta's finite difference scheme is employed to evaluate the nonlinear dynamic response of the cantilevered pipe conveying fluid. A parametric study is carried out to examine the influences of mass parameter and dimensionless mean flow velocity on the nonlinear dynamic characteristics of the cantilevered pipe conveying fluid in post-flutter region. The role of size-dependency in the nonlinear behavior of pipe is explored by converting the new set of dimensionless parameters into the conventional one. Eventually, some convergence studies are performed to indicate the reliability of present results.  相似文献   

20.
页岩中的孔隙直径通常为纳米量级,基于连续流的达西定律已不能描述纳米级孔隙内的气体流动规律,一般采用附加滑移边界条件的Navier-Stokes方程对其进行描述. 由此可导出与压力相关的渗透率公式(称为"视渗透率"),并用来修正达西定律.因而,渗透率修正方法研究成为页岩气流动研究的热点之一.首先,基于Hagen-Poiseuille 流推导出一般形式二阶滑移模型下的速度分布和流量公式,并推导出相应的渗透率修正公式.该渗透率修正公式基本能将现有的滑移速度模型统一表达为对渗透率的修正. 基于一般形式的渗透率修正公式,重点研究了Maxwell, Hsia, Beskok与Ng 滑移模型速度分布渗透率修正系数、及其对井底压力的影响;提出了基于Ng 滑移速度模型的渗透率修正公式. 基于页岩实际储层温压系统及孔隙分布,计算了Kn 范围及储层条件下页岩气的流动形态,表明页岩气流动存在滑移流、过渡流与分子自由流. 而Ng 模型能描述Kn<88 的滑移流、过渡流、自由分子流的流量规律,因此可以用于描述页岩实际储层中页岩气的流动特征. 计算表明,随着Kn 的增加,不同滑移模型下的渗透率修正系数差异增大.Maxwell与Hsia模型适用于滑移流与过渡流早期,Beskok与Ng 模型可描述自由分子流下的流动规律,但二者在虚拟的孔径均为10nm页岩中,井底压力的差别开始显现;在虚拟的孔径均为1nm页岩中,井底压力的差别开始明显.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号