首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A self-consistent integral equation theory is presented for the conformational properties and spinodal lines of random copolymer melts. The theory combines field-theoretic methods with the polymer reference interaction site model (PRISM) theory. The many-chain problem is replaced by a single chain where the sites interact via a bare plus a self-consistently determined medium-induced potential, and the conformational properties are obtained using a variational method. The theoretical prediction for the spinodal line is qualitatively similar to that of non-self-consistent PRISM theory. The theory predicts macroscopic phase separation for all values of the monomer correlation strength, lambda. The inverse spinodal temperature is a nonmonotonic function of lambda with a maximum at lambda(max). For large values of lambda( approximately 1), the values of spinodal temperatures are almost identical to those of non-self-consistent PRISM theory. For low values of lambda, however, the theory predicts higher values for spinodal temperatures than non-self-consistent PRISM theory. The theory predicts significant changes in the mean-square end-to-end distance as the temperature is decreased.  相似文献   

3.
Full geometry optimizations using both singles and doubles coupled cluster theory with perturbative triple excitations, CCSD(T), and second order multi-reference perturbation theory, MRMP2, have been employed to predict the structure of Si9H12, a cluster commonly used in calculations to represent the Si(100) surface. Both levels of theory predict the structure of this cluster to be symmetric (not buckled), and no evidence for a buckled (asymmetric) structure is found at either level of theory.  相似文献   

4.
老年性白内障与微量元素   总被引:1,自引:0,他引:1  
参阅有关老年性白内障的文献.归纳其病因有四种学说:(1)老化学说;(2)醌体学说;(3)微量元素学说;(4)中医学说.按病因学说不同.用药各异.目前治疗老年性白内障药物有滴眼剂及内服剂,其中有一种新药名为除障灵.它是根据中医学说及微量元素学说,筛选中药制成,它含有丰富的锌、硒、铜、镁等微量元素.应用除障灵治疗老年性白内障患者102例(204只眼),观察6个月至2年,有效率达95%,开创了治疗老年性白内障的新方法.  相似文献   

5.
We present an alternative derivation of the dynamical density functional theory for the one-body density profile of a classical fluid developed by Marconi and Tarazona [J. Chem. Phys. 110, 8032 (1999)]. Our derivation elucidates further some of the physical assumptions inherent in the theory and shows that it is not restricted to fluids composed of particles interacting solely via pair potentials; rather it applies to general, multibody interactions. The starting point for our derivation is the Smoluchowski equation and the theory is therefore one for Brownian particles and as such is applicable to colloidal fluids. In the second part of this paper we use the dynamical density functional theory to derive a theory for spinodal decomposition that is applicable at both early and intermediate times. For early stages of spinodal decomposition our nonlinear theory is equivalent to the (generalized) linear Cahn-Hilliard theory, but for later times it incorporates coupling between different Fourier components of the density fluctuations (modes) and therefore goes beyond Cahn-Hilliard theory. We describe the results of calculations for a model (Yukawa) fluid which show that the coupling leads to the growth of a second maximum in the density fluctuations, at a wave number larger than that of the main peak.  相似文献   

6.
It is shown that it is possible to formulate a sum-over-states (SOS) response theory for static perturbations based directly on the Kohn-Sham formulation of density functional theory (DFT). The SOS-DFT response theory affords expressions analogous to those obtained from the classical Raleigh-Schrodinger perturbation theory, where use is made of a complete set of ground and excited state energies and wave functions. The static SOS-DFT response theory is applicable for both real and imaginary perturbations. The theory is established by making use of time-dependent DFT taken to zero frequency with the use of the adiabatic approximation. In the SOS-DFT formulation the expression for electric (e.g., polarization) and magnetic (e.g., magnetization) response properties are symmetrical.  相似文献   

7.
8.
On the interface of a solid surface and a solution of nonadsorbing polymer there exists a depletion layer (DL), where the concentration of polymer segments is lower. Donath's electrophoretic theory, based on the decreased viscosity in the DL region, allows computing DL thickness from the relative (with and without polymer) electrophoretic mobility, the bulk viscosity, and the ionic strength. The aim of this work is to check experimentally Donath's nonlinear electrophoretic (NLE) theory under the most favorable conditions--liposomes in solutions of low-molecular poly(ethylene glycol) (PEG). In order to determine DL thickness, the dependence of mobility on viscosity is chosen instead on ionic strength. The value obtained from NLE theory is compared with the DL thickness calculated by Vincent's pragmatic theory. The conformation-statistical parameters are calculated on the base of viscosimetric measurements of PEG solution. The results indicate a few shortcomings of NLE theory. The main one is that DL thickness does not depend on polymer concentration, a fact that is in discrepancy with the prediction of Vincent's theory. The conclusion is that NLE theory describes well the experimental dependence of the relative mobility on the bulk viscosity, but it is inapplicable to quantitative determination of DL thickness.  相似文献   

9.
By introducing a new, type of kinematic constants N into the Talmi transformation (TT) theory, compact and effective formulae for Talmi-Smirnov (TSC) and Talmi-Moshinsky (TMC) coefficients have been obtained Together with conventional applications (nuclear shell theory kinetic theory of gases) the technique developed has been found to be successfully applied in quantum theory of molecular electronic states  相似文献   

10.
A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.  相似文献   

11.
Optical heterodyne-detected optical Kerr effect (OHD-OKE) experimental data are pre-sented on nematogens 4-(trans-4-n-octylcyclohexyl)isothiocyanatobenzene (8-CHBT), and 4-(4-pentyl-cyclohexyl)-benzonitrile (5-PCH) in the isotropic phase. The 8-CHBT and 5-PCH data and previously published data on 4-pentyl-4-biphenylcarbonitrile (5-CB) are analyzed using a modification of a schematic mode coupling theory (MCT) that has been successful in describing the dynamics of supercooled liquids. At long time, the OHD-OKE data (orientational relaxation) are well described with the standard Landau-de Gennes (LdG) theory. The data decay as a single exponential. The decay time diverges as the isotropic to nematic phase transition is approached from above. Previously there has been no theory that can describe the complex dynamics that occur at times short compared to the LdG exponential decay. Earlier, it has been noted that the short-time nematogen dynamics, which consist of several power laws, have a functional form identical to that observed for the short time behavior of the orientational relaxation of supercooled liquids. The temperature-dependent orientational dynamics of supercooled liquids have recently been successfully described using a schematic mode coupling theory. The schematic MCT theory that fits the supercooled liquid data does not reproduce the nematogen data within experimental error. The similarities of the nematogen data to the supercooled liquid data are the motivation for applying a modification of the successful MCT theory to nematogen dynamics in the isotropic phase. The results presented below show that the new schematic MCT theory does an excellent job of reproducing the nematogen isotropic phase OHD-OKE data on all time scales and at all temperatures.  相似文献   

12.
A molecular-thermodynamic (MT) theory was developed to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. The theory was validated by comparing predicted and experimental cmc's of ternary surfactant mixtures, yielding results that were comparable to, and sometimes better than, the cmc's determined using regular solution theory. The theory was also used to model a commercial nonionic surfactant (Genapol UD-079), which was modeled as a mixture of 16 surfactant components. The predicted cmc agreed well with the experimental cmc, and the monomer concentration was predicted to increase significantly above the cmc. In addition, the monomer and the micelle compositions were predicted to vary significantly with surfactant concentration. These composition variations were rationalized in terms of competing steric and entropic effects and a micelle shape transition near the cmc. To understand the packing constraints imposed on ternary surfactant mixtures better, the maximum micelle radius was also examined theoretically. The MT theory presented here represents the first molecular-based theory of the micellization behavior of mixtures of three or more conventional surfactants. In article 2 of this series, the MT theory will be extended to model the micellization of mixtures of conventional and pH-sensitive surfactants.  相似文献   

13.
A model for coupled tilt angle and lattice distortion parameter is proposed to describe the R(I)-R(V) transition in n-alkane. The model is treated in the framework of a Landau mean-field theory and renormalization-group theory. The influence of gauche conformations and molecular flexibility on the R(I)-R(V) transition is discussed within the mean-field theory. The fluctuations on the R(I)-R(V) transition are discussed by the renormalization-group theory. Renormalization-group theory predicts that the R(I)-R(V) transition can be driven first order by fluctuations and becomes second order at a tricritical point. Available experimental data are consistent with our model.  相似文献   

14.
A theory on the time development of the density and current fields of simple fluids under an external field is formulated through the generalized Langevin formalism. The theory is applied to the linear solvation dynamics of a fixed solute regarding the solute as the external field on the solvent. The solute-solvent-solvent three-body correlation function is taken into account through the hypernetted-chain integral equation theory, and the time correlation function of the random force is approximated by that in the absence of the solute. The theoretical results are compared with those of molecular-dynamics (MD) simulation and the surrogate theory. As for the transient response of the density field, our theory is shown to be free from the artifact of the surrogate theory that the solvent can penetrate into the repulsive core of the solute during the relaxation. We have also found a large quantitative improvement of the solvation correlation function compared with the surrogate theory. In particular, the short-time part of the solvation correlation function is in almost perfect agreement with that from the MD simulation, reflecting that the short-time expansion of the theoretical solvation correlation function is exact up to t(2) with the exact three-body correlation function. A quantitative improvement is found in the long-time region, too. Our theory is also applied to the force-force time correlation function of a fixed solute, and similar improvement is obtained, which suggests that our present theory can be a basis to improve the mode-coupling theory on the solute diffusion.  相似文献   

15.
16.
The formalism of response theory is applied to derive expressions for static and dynamic polarizabilities within the state-specific multireference coupled-cluster theory suggested by Mukherjee and co-workers (Mk-MRCC) [J. Chem. Phys. 110, 6171 (1998)]. We show that the redundancy problem inherent to Mk-MRCC theory gives rise to spurious poles in the Mk-MRCC response functions, which hampers the reliable calculation of dynamic polarizabilities. Furthermore, we demonstrate that in the case of a symmetry-breaking perturbation a working response theory is obtained only if certain internal excitations are included in the responses of the cluster amplitudes. Exemplary calculations within the singles and doubles approximation (Mk-MRCCSD) are carried out on aryne compounds to illustrate the impact of a multireference ansatz on the polarizability.  相似文献   

17.
This article compares the Biot [J. Appl. Phys. 12, 155 (1941)] and Tanaka, Hocker, and Benedek (THB) [J. Chem. Phys. 59, 5151 (1973)] theories of gel deformation. Biot's theory treats the gel as a continuum with the pore pressure as a state variable whereas the THB theory treats the gel as a mixture of solid and liquid phases. We revisit the problem of gel deswelling and use this example to show that there can be substantial differences between the two theories. The THB theory is not a complete mixture theory since the displacements of the liquid are assumed to be negligibly small in comparison with the displacements of the network. We propose a simple extension of the THB model, which takes into account the momentum transfer of the liquid phase. We show that with this simple addition and some very reasonable assumptions, the extended THB theory is identical to the Biot theory.  相似文献   

18.
The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g(0)(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n< or =6), and predicts free energies that are within 0.3 kT of simulation results up to the fluid freezing point.  相似文献   

19.
Electrokinetic phenomena at grafted polyelectrolyte layers   总被引:1,自引:0,他引:1  
During the last decades the electrokinetic theory of Smoluchowski (Z. Phys. Chem. 92 (1918) 129) was extended to be applicable for soft surfaces (grafted polyelectrolyte layers (PL), biological and artificial membranes, etc.) by either using the Debye approximation or numerical solutions. In the theory of Ohshima (Colloids Surf. A 103 (1995) 249) the nonlinearized Poisson-Boltzmann (PB) equation for thick and uniform PL is solved analytically and a general hydrodynamic equation is derived in an integral form. These advantages in the theory of Ohshima provided a base for the further development of a generalized electrokinetic theory for soft surfaces. In his theory the final equation for the electroosmotic (electrophoretic) velocity is specified for the case of the complete dissociation of ionic sites within PL. Accordingly, the equation may be used only if the difference between pK and pH is very large. However, it turned out that an analytical solution of the nonlinearized PB equation for thick PL is possible for any degree of dissociation. This was achieved using the approximation of excluded coions if the absolute value of the reduced Donnan potential is larger than 2 and due to the simplification in the case of weak dissociation, when the absolute value of the reduced Donnan potential is less than 2. Combining this generalized double layer (DL) theory for PL and the theory of Ohshima enables to obtain an analytical equation for electroosmosis for the general case of any degree of dissociation. This equation creates for the first time a theoretical base for the interpretation of electrokinetic fingerprinting (EF) for the characterization of soft surfaces.  相似文献   

20.
Two different models for chemical bond were developed almost simultaneously after the Schrödinger formulation of quantum theory. These are known as the valence bond (VB) and molecular orbital (MO) theories. Initially chemists preferred the VB theory and ignored the MO theory. Now the VB theory is almost dropped out of currency. The context of discovery and Linus Pauling’s overpowering influence gave the VB theory its initial advantage. The current universal acceptance of the MO theory is due to its ability to provide direct interpretation of many different types of experiments now being pursued. In current research both localized bonds and delocalized charge distributions play important roles and the MO theory has been successful in giving a good account of both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号