首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper deals with the nonlinear forced vibration of FGM rectangular plate with a boundary of two edges clamped opposite and the other two free. The plate is subjected to transversal and in-plane excitations. The present research treats the material properties of the FGM plates as temperature-dependent and graded continuously throughout the thickness direction, following the volume fraction of the constituent materials according to the power law. The temperature is assumed to be constant in the plane and varied only in the thickness direction of the plate. In the framework of geometrical nonlinearity the plate is modeled and the equations of motion are obtained on Hamilton's principle. With the help of Galerkin discretization, the nonlinear ordinary differential equations describing transverse vibration of the plate are proposed. By the numerical method, the nonlinear dynamical responses of the FGM plate with two clamped opposite and two free edges are analyzed.  相似文献   

2.
针对陶瓷-金属功能梯度圆板,同时考虑几何非线性、材料物性参数随温度变化且材料组分沿厚度方向按幂律分布的情况,应用虚功原理给出了热载荷与横向简谐载荷共同作用下的非线性振动偏微分方程。在固支无滑动的边界条件下,通过引入位移函数,利用伽辽金方法得到了达芬型非线性动力学方程。利用Melnikov方法,给出了热环境中功能梯度圆板可能发生混沌运动的临界条件。通过数值算例,给出了不同体积分数指数和温度的同宿分岔曲线,平面相图和庞加莱映射图,讨论其对临界条件的影响,证实了系统混沌运动的存在。通过分岔图和与其相对应的最大李雅普诺夫指数图,分析了激励频率和激励幅值对倍周期分岔的影响及变化规律,发现系统可出现周期、倍周期和混沌等复杂动力学响应。  相似文献   

3.
In this paper, the nonlinear partial differential equations of nonlinear vibration for an imperfect functionally graded plate (FGP) in a general state of arbitrary initial stresses are presented. The derived equations include the effects of initial stresses and initial imperfections size. The material properties of a functionally graded plate are graded continuously in the direction of thickness. The variation of the properties follows a simple power-law distribution in terms of the volume fractions of the constituents. Using these derived governing equations, the nonlinear vibration of initially stressed FGPs with geometric imperfection was studied. Present approach employed perturbation technique, Galerkin method and Runge–Kutta method. The perturbation technique was used to derive the nonlinear governing equations. The equations of motion of the imperfect FGPs was obtained using Galerkin method and then solved by Runge–Kutta method. Numerical solutions are presented for the performances of perfect and imperfect FGPs. The nonlinear vibration of a simply supported ceramic/metal FGP was solved. It is found that the initial stress, geometric imperfection and volume fraction index greatly affect the behaviors of nonlinear vibration.  相似文献   

4.
包海军  胡宇达 《力学季刊》2020,41(4):728-738
在考虑热因素及旋转运动条件下,针对金属-陶瓷功能梯度圆板的固有振动问题进行研究.给出随温度变化且材料组分沿厚度方向按幂律分布的材料物性参数,依据热弹性理论得到圆板的能量关系式.基于哈密顿原理建立旋转金属-陶瓷功能梯度圆板热弹性动力学方程.采用伽辽金法得到边界约束下圆板的自由振动方程,确定了静挠度及固有振动频率.基于数值计算,得到系统固有频率值随体积分数指数、转速和温度等参量的变化曲线,讨论了静挠度变化规律及动力系统的奇点稳定性问题.结果表明,固有频率随体积分数指数、材料表面温度以及转速的增加而减小.  相似文献   

5.
A nonlinear analytical model for the transverse vibration of cracked magneto-electro-elastic (MEE) thin plate is presented using the classical plate theory (CPT). The MEE plate material selected is fiber-reinforced \(\hbox {BaTiO}_{3}\)\(\hbox {CoFe}_{2}\hbox {O}_{4}\) composite, which contains a partial crack at the center. The CPT and the simplified line spring model for crack terms are modified to accommodate the effect of electric and magnetic field rigidities. The analysis considers in-plane forces for the MEE plate, which makes the model nonlinear. The derived governing equation is solved by expressing the transverse displacement in terms of modal coordinates. An approximate solution for forced vibration of cracked MEE plate is also obtained using a perturbation technique. The effect of part-through crack, volume fraction of the composite on the vibration frequencies and structure response is investigated. The frequency response curves presented shows the phenomenon of hard or soft spring. Furthermore, the devised model is extended to the case of cracked MEE plate submerged in fluid. Velocity potential function and Bernoulli’s equation are used to incorporate the inertia effect of surrounding fluid. Both partially and totally submerged plate configurations are considered. The validation of the present results is carried out for intact submerged plate as to the best of the author’s knowledge the literature lacks in results for submerged-cracked plates. New results for cracked MEE plate show that the vibration characteristics are affected by volume fraction, crack length, fluid level and depth of immersion.  相似文献   

6.
热环境中旋转运动功能梯度圆板的强非线性固有振动   总被引:1,自引:0,他引:1  
研究热环境中旋转运动功能梯度圆板的非线性固有振动问题.针对金属-陶瓷功能梯度圆板,考虑几何非线性、材料物理属性参数随温度变化以及材料组分沿厚度方向按幂律分布的情况,应用哈密顿原理推得热环境中旋转运动功能梯度圆板的非线性振动微分方程.考虑周边夹支边界条件,利用伽辽金法得到了横向非线性固有振动方程,并确定了静载荷引起的静挠度.用改进的多尺度法求解强非线性方程,得出非线性固有频率表达式.通过算例,分析了旋转运动功能梯度圆板固有频率随转速、温度等参量的变化情况.结果表明,非线性固有频率随金属含量的增加而降低;随转速和圆板厚度的增大而升高;随功能梯度圆板表面温度的升高而降低.  相似文献   

7.
An approach is presented to study the nonlinear forced vibration of a stiffened plate. The stiffened plate is divided into one plate and some stiffeners, with the plate considered to be geometrically nonlinear, and the stiffeners taken as geometrically nonlinear Euler beams. Assuming the displacement of the stiffened plate, Lagrange equation and modal superposition method are used to derive the dynamic equilibrium equations of the stiffened plate according to energy of the system. A stiffened plate with four clamped edges subjected to harmonic excitation is studied by means of the method of multiple scales; the first approximation solutions of the double-modal motion of the system are obtained. Numerical examples for different stiffened plates are presented to discuss the steady response of the primary resonance and the amplitude?Cfrequency relationship; and some nonlinear forced vibration characteristics of the stiffened plate are obtained, which are useful for engineering design.  相似文献   

8.
A theoretical model for geometrically nonlinear vibration analysis of thermo-piezoelectrically actuated circular plates made of functionally grade material (FGM) is presented based on Kirchhoff’s–Love hypothesis with von-Karman type geometrical large nonlinear deformations. The material properties of the FG core plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents. Dynamic equations and boundary conditions including thermal, elastic and piezoelectric couplings are formulated and solutions are derived. An exact series expansion method combined with perturbation approach is used to model the nonlinear thermo-electro-mechanical vibration behavior of the structure. Control of the FG plate’s nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are evaluated. Numerical results for FG plates with various mixtures of ceramic and metal are presented in dimensionless forms. A parametric study is also undertaken to highlight the effects of the thermal environment, applied actuator voltage and material composition of the FG core plate on the nonlinear vibration characteristics of the composite structure.  相似文献   

9.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

10.
In this paper, an electromechanical coupled nonlinear dynamic equation of a microbeam under an electrostatic force is presented. Using the nonlinear dynamic equations and perturbation method, we investigated nonlinear free vibrations, forced responses far from and near to natural frequency, respectively. Nonlinear natural frequencies and vibrating amplitudes of the electromechanical coupled microbeam are dependent on the mechanical and electric parameters. Compared with linear forced responses, the obvious shift of the mean dynamic response occurs. Under certain condition, the jump phenomenon will occur. The studies can be used to design parameters of the microbeam and remove undesirable dynamic behavior such as jump phenomenon, etc.  相似文献   

11.
The dynamic von Karman equations are used for nonlinear analysis of a thin circular plate made of a functionally graded material. The thickness of the plate is constant and the properties of the functionally graded material depend on temperature and vary throughout the thickness. It is assumed that the plate oscillates with large amplitudes. The forces and moments in the plate are determined in solving the equations for harmonic vibrations. Relevant results are obtained in the case of stead-state free vibrations. These results indicate that the volume fraction has a strong effect on the forces, moments, and material properties Published in Prikladnaya Mekhanika, Vol. 44, No. 6, pp. 134–144, June 2008. An erratum to this article can be found at  相似文献   

12.
A nonlinear vibration analysis of a simply supported functionally graded rectangular plate with a through-width surface crack is presented in this paper. The plate is subjected to a transverse excitation force. Material properties are graded in the thickness direction according to exponential distributions. The cracked plate is treated as an assembly of two sub-plates connected by a rotational spring at the cracked section whose stiffness is calculated through stress intensity factor. Based on Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the FGM plate are derived by using the Hamilton’s principle. The deflection of each sub-plate is assumed to be a combination of the first two mode shape functions with unknown constants to be determined from boundary and compatibility conditions. The Galerkin’s method is then utilized to convert the governing equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms under the external excitation, which is numerically solved to obtain the nonlinear responses of cracked FGM rectangular plates. The influences of material property gradient, crack depth, crack location and plate thickness ratio on the vibration frequencies and transient response of the surface-racked FGM plate are discussed in detail through a parametric study.  相似文献   

13.
功能梯度夹层双曲壳结构广泛应用在航空航天、海洋工程等领域中,对于该类结构的动力学特性研究非常重要。本文以热环境下功能梯度夹层双曲壳为研究对象,在三阶剪切变形理论的基础上,考虑横向拉伸作用的影响提出了一种新的位移场,假设材料的物性参数与温度有关,且沿厚度方向表示为幂律函数。利用Hamilton原理得到简支边界条件下功能梯度夹层双曲壳三维振动系统动力学方程,利用Navier法求得两种不同夹层类型的系统固有频率。研究了几何物理参数和温度场对功能梯度夹层双曲壳自由振动固有频率的影响。  相似文献   

14.
Theoretical analysis of the nonlinear vibration effects on the sound absorption of a panel absorber and sound transmission loss of a panel backed by a rectangular cavity is herein presented. The harmonic balance method is employed to derive a structural acoustic formulation from two-coupled partial differential equations representing the nonlinear structural forced vibration and induced acoustic pressure; one is the well-known von Karman??s plate equation and the other is the homogeneous wave equation. This method has been used in a previous study of nonlinear structural vibration, in which its results agreed well with the elliptic solution. To date, very few classical solutions for this nonlinear structural-acoustic problem have been developed, although there are many for nonlinear plate or linear structural-acoustic problems. Thus, for verification purposes, an approach based on the numerical integration method is also developed to solve the nonlinear structural-acoustic problem. The solutions obtained with the two methods agree well with each other. In the parametric study, the panel displacement amplitude converges with increases in the number of harmonic terms and acoustic and structural modes. The effects of excitation level, cavity depth, boundary condition, and damping factor are also examined. The main findings include the following: (1)?the well-known ??jump phenomenon?? in nonlinear vibration is seen in the sound absorption and transmission loss curves; (2)?the absorption peak and transmission loss dip due to the nonlinear resonance are significantly wider than those in the linear case because of the wider resonant bandwidth; and (3)?nonlinear vibration has the positive effect of widening the absorption bandwidth, but it also degrades the transmission loss at the resonant frequency.  相似文献   

15.
Based on the classical nonlinear von Karman plate theory, axisymmetric large deflection bending of a functionally graded circular plate is investigated under mechanical, thermal and combined thermal–mechanical loadings, respectively, and axisymmetric thermal post-buckling behavior of a functionally graded circular plate is also investigated. The mechanical and thermal properties of functionally graded material (FGM) are assumed to vary continuously through the thickness of the plate, and obey a simple power law of the volume fraction of the constituents. Governing equations for the problem are derived, and then a shooting method is employed to numerically solve the equations. Effects of material constant n and boundary conditions on the temperature distribution, nonlinear bending, critical buckling temperature and thermal post-buckling behavior of the FGM plate are discussed in details.  相似文献   

16.
The three-dimensional frame is simplified into flat plate by the method of quasiplate. The nonlinear relationships between the surface strain and the midst plane displacement are established. According to the thin plate nonlinear dynamical theory, the nonlinear dynamical equations of three-dimensional frame in the orthogonal coordinates system are obtained. Then the equations are translated into the axial symmetry nonlinear dynamical equations in the polar coordinates system. Some dimensionless quantities different from the plate of uniform thickness are introduced under the boundary conditions of fixed edges, then these fundamental equations are simplified with these dimensionless quantities. A cubic nonlinear vibration equation is obtained with the method of Galerkin. The stability and bifurcation of the circular three-dimensional frame are studied under the condition of without outer motivation. The contingent chaotic vibration of the three-dimensional frame is studied with the method of Melnikov. Some phase figures of contingent chaotic vibration are plotted with digital artificial method.  相似文献   

17.
The nonlinear, forced, damped vibrations of simply-supported rectangular sandwich plates with a viscoelastic core are studied. The general, nonlinear dynamic equations of asymmetrical sandwich plates are derived using the virtual work principle. Damping is taken into account by modelling the viscoelastic core as a Voigt-Kelvin solid. The harmonic balance method is employed for solving the equations of motion. The influence of the thickness of the layers and material properties on the nonlinear response of the plates is studied.  相似文献   

18.
贺丹  门亮 《计算力学学报》2018,35(3):326-330
基于一种新的各向异性修正偶应力理论,建立了碳纳米管增强复合材料功能梯度板的自由振动模型。该模型能够描述尺度效应,且仅包含一个尺度参数。基于一阶剪切变形理论和哈密顿原理推演了板的运动微分方程,并以四边简支板为例给出了自振频率的解析解。讨论了板的几何尺寸、碳纳米管体分比含量和分布方式等因素对板的自振频率的影响。结果表明,本文模型所预测的板的自振基频总是高于经典弹性理论的Mindlin板模型的预测结果,两者间的差异在板的几何尺寸接近尺度参数的值时非常明显,且会随着板的几何尺寸的增大而逐渐消失。  相似文献   

19.
基于物理中面和一阶剪切变形板理论,研究了不同边界条件下功能梯度材料(FGM)中厚板的自由振动问题.假设功能梯度板的材料性质沿厚度方向按幂函数规律连续变化.根据哈密顿原理建立了FGM板有限元形式的自由振动方程,利用MATLAB软件编写程序进行了计算.通过数值算例,讨论了不同边界条件下FGM中厚板的无量纲频率随材料梯度指数和厚宽比的变化情况,并与经典板理论下的频率进行了比较.  相似文献   

20.
The four modes of vibration of an isotropic rectangular plate with an inclined crack are investigated. It is assumed that the crack remains continuous and its center is located at the center of the plate. The governing nonlinear equation of the transverse vibration of the plate with the plate boundary conditions being simply-supported on all edges is developed. The multiple scale perturbation method is utilized as the solution procedure to find the steady-state frequency response equations for all the four modes of vibration. The equations for the free and forced vibrations are derived and their frequency responses are presented. A special case of large-scale excitation force has also been considered. The parameter sensitivity analysis for the angle of crack, length of crack and the position of the external applied excitation force is performed. It has been shown that according to the aspect ratio of the plate, the vibration modes can have either nonlinear hardening effect or nonlinear softening behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号