首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [Ru(III)(edta)(H(2)O)](-) (1) (edta = ethylenediaminetetraacetate) with hydrogen peroxide was studied kinetically as a function of [H(2)O(2)], temperature (5-35 degrees C) and pressure (1-1300 atm) at a fixed pH of 5.1 using stopped-flow techniques. The reaction was found to consist of two steps involving the rapid formation of a [Ru(III)(edta)(OOH)](2-) intermediate which subsequently undergoes parallel heterolytic and homolytic cleavage to produce [(edta)Ru(V)=O](-) (45%) and [(edta)Ru(IV)(OH)](-) (55%), respectively. The water soluble trap, 2,2'-azobis(3-ethylbenzithiazoline-6-sulfonate) (ABTS), was employed to substantiate the mechanistic proposal. Reactions were carried out under pseudo-first conditions for [ABTS] > [HOBr] > [1], and were monitored as a function of time for the formation of the one-electron oxidation product ABTS* (+). A detailed mechanism in agreement with the rate and activation parameters is presented, and the results are discussed with reference to data reported for the corresponding [Fe(III)(edta)(H(2)O)](-)/H(2)O(2) system.  相似文献   

2.
The kinetics and mechanism of the [Ru(III)(edta)(H(2)O)](-)-mediated oxidation of cysteine (RSH) by hydrogen peroxide (edta(4-) = ethylenediaminetetraacetate), were studied in detail as a function of both the hydrogen peroxide and cysteine concentrations at pH 5.1 and room temperature. The kinetic traces reveal clear evidence for a catalytic process in which hydrogen peroxide reacts directly with cysteine coordinated to the Ru(III)(edta) complex in the form of [Ru(III)(edta)SR](2-). A parallel process in which [Ru(III)(edta)(H(2)O)](-) first reacts with H(2)O(2) to produce [Ru(V)(edta)O](-) and subsequently oxidizes cysteine, is orders of magnitude slower than the [Ru(III)(edta)(H(2)O)](-)-mediated oxidation in which cysteine rapidly coordinates to [Ru(III)(edta)(H(2)O)](-) prior to the reaction with H(2)O(2). HPLC product analyses revealed the formation of cystine (RSSR) as major product along with cysteine sulfinic acid (RSO(2)H) in the reaction system, and established the catalytic role of [Ru(III)(edta)(H(2)O)](-). Simulations were performed to account for the rather complex kinetic traces in terms of the suggested reaction mechanism. The results of the simulations support the proposed reaction mechanism that involves the oxidation of coordinated cysteine to cysteine sulfenic acid (RSOH), which subsequently rapidly reacts with H(2)O(2) and RSH to form RSO(2)H and RSSR, respectively.  相似文献   

3.
The reactions of [Ru(III)(edta)(H(2)O)](-) (1) (edta = ethylenediaminetetraacetate) with tert-butylhydroperoxide ((t)BuOOH) and potassium hydrogenpersulfate (KHSO(5)) were studied kinetically as a function of oxidant concentration and temperature (10-30 degrees C) at a fixed pH of 6.1 using stopped-flow techniques. Kinetic results were analyzed by using global kinetic analysis techniques. The reaction was found to consist of two steps involving the rapid formation of a [Ru(III)(edta)(OOR)](2-) intermediate, which subsequently undergoes heterolytic cleavage to form [(edta)Ru(V)=O](-). Since [(edta)Ru(V)=O](-) was produced almost quantitatively in the reaction of 1 with the hydroperoxides (t)BuOOH and KHSO(5), the common mechanism is one of heterolytic scission of the O-O bond. The water soluble and easy to oxidize substrate 2,2'-azobis(3-ethylbenzithiazoline-6-sulfonate (ABTS), was employed to substantiate the mechanistic proposal. Reactions were carried out under pseudo-first order conditions for [ABTS] > [hydroperoxide] > [1], and were monitored as a function of time for the formation of the one-electron oxidation product ABTS (*+). The detailed suggested mechanism is consistent with the reported rate and activation parameters, and discussed in reference to the results reported for the reaction of [Ru(II)(edta)(H(2)O)](-) with H(2)O(2).  相似文献   

4.
The interaction of [Ru(III)(edta)(H(2)O)](-) with a series of selected thiols having extra functional groups was investigated potentiometrically and kinetically. The pK(a) values of the uncoordinated carboxylic acid group and coordinated water molecule are 3.12 and 7.41, respectively, in aqueous solution at 25 degrees C and 0.1 M ionic strength. The formation constants of the complexes were determined in the pH range 3-9, and the concentration distribution of the various complex species was evaluated as a function of pH. The effect of dioxane on the pK(a) values of [Ru(III)(Hedta)(H(2)O)] and the formation constants of the corresponding thiol complexes is presented. The study also provides mechanistic information on the reaction of [Ru(III)(edta)(H(2)O)](-) with the thiols. The low values of DeltaH(not equal) and negative values of DeltaS(not equal) and DeltaV(not equal) for the substitution reactions of [Ru(III)(edta)(H(2)O)](-) clearly support the associative character of the substitution process.  相似文献   

5.
The complexes [Ru(tpy)(acac)(Cl)], [Ru(tpy)(acac)(H(2)O)](PF(6)) (tpy = 2,2',2"-terpyridine, acacH = 2,4 pentanedione) [Ru(tpy)(C(2)O(4))(H(2)O)] (C(2)O(4)(2)(-) = oxalato dianion), [Ru(tpy)(dppene)(Cl)](PF(6)) (dppene = cis-1,2-bis(diphenylphosphino)ethylene), [Ru(tpy)(dppene)(H(2)O)](PF(6))(2), [Ru(tpy)(C(2)O(4))(py)], [Ru(tpy)(acac)(py)](ClO(4)), [Ru(tpy)(acac)(NO(2))], [Ru(tpy)(acac)(NO)](PF(6))(2), and [Ru(tpy)(PSCS)Cl] (PSCS = 1-pyrrolidinedithiocarbamate anion) have been prepared and characterized by cyclic voltammetry and UV-visible and FTIR spectroscopy. [Ru(tpy)(acac)(NO(2))](+) is stable with respect to oxidation of coordinated NO(2)(-) on the cyclic voltammetric time scale. The nitrosyl [Ru(tpy)(acac)(NO)](2+) falls on an earlier correlation between nu(NO) (1914 cm(-)(1) in KBr) and E(1/2) for the first nitrosyl-based reduction 0.02 V vs SSCE. Oxalate ligand is lost from [Ru(II)(tpy)(C(2)O(4))(H(2)O)] to give [Ru(tpy)(H(2)O)(3)](2+). The Ru(III/II) and Ru(IV/III) couples of the aqua complexes are pH dependent. At pH 7.0, E(1/2) values are 0.43 V vs NHE for [Ru(III)(tpy)(acac)(OH)](+)/[Ru(II)(tpy)(acac)(H(2)O)](+), 0.80 V for [Ru(IV)(tpy)(acac)(O)](+)/[Ru(III)(tpy)(acac)(OH)](+), 0.16 V for [Ru(III)(tpy)(C(2)O(4))(OH)]/[Ru(II)(tpy)(C(2)O(4))(H(2)O)], and 0.45 V for [Ru(IV)(tpy)(C(2)O(4))(O)]/[Ru(III)(tpy)(C(2)O(4))(OH)]. Plots of E(1/2) vs pH define regions of stability for the various oxidation states and the pK(a) values of aqua and hydroxo forms. These measurements reveal that C(2)O(4)(2)(-) and acac(-) are electron donating to Ru(III) relative to bpy. Comparisons with redox potentials for 21 related polypyridyl couples reveal the influence of ligand changes on the potentials of the Ru(IV/III) and Ru(III/II) couples and the difference between them, DeltaE(1/2). The majority of the effect appears in the Ru(III/II) couple. ()A linear correlation exists between DeltaE(1/2) and the sum of a set of ligand parameters defined by Lever et al., SigmaE(i)(L(i)), for the series of complexes, but there is a dramatic change in slope at DeltaE(1/2) approximately -0.11 V and SigmaE(i)(L(i)) = 1.06 V. Extrapolation of the plot of DeltaE(1/2) vs SigmaE(i)(L(i)) suggests that there may be ligand environments in which Ru(III) is unstable with respect to disproportionation into Ru(IV) and Ru(II). This would make the two-electron Ru(IV)O/Ru(II)OH(2) couple more strongly oxidizing than the one-electron Ru(IV)O/Ru(III)OH couple.  相似文献   

6.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

7.
The reaction of NO and the immobilized dimer complex (edta)(2)Ru(2)(III(1/2),III(1/2)) on silica gel chemically modified with [3-(2-aminoethyl)aminopropyl]trimethoxysilane (AEATS) produces the corresponding immobilized nitrosyl complex AEATS/Ru(II)NO(+). This compound, a monomer, was obtained by reducing the immobilized ruthenium dimer either electrochemically or with Eu(II) and reacting this species with NO(2)(-) ions. The properties of [Ru(edta)NO](-) in solution and anchored (AEATS/Ru(II)NO(+)) on silica were compared using electrochemical (DPV, CV) and spectroscopic (IR, UV-vis, and ESR) techniques. The results indicate that immobilization does not alter the reactivity of the ruthenium complex and confirm that [Ru(edta)(H(2)O)](2)(-) may be used, either in solution or immobilized, as a catalyst for the conversion of NO(2)(-) to NO(+). Both the anchored nitrosyl complex AEATS/Ru(II)NO(+) and the [Ru(edta)NO](-) species in solution, upon one-electron reduction, liberate NO at comparable rates.  相似文献   

8.
Ruthenium-terpyridine complexes incorporating a 2,2'-dipyridylamine ancillary ligand [Ru(II)(trpy)(L)(X)](ClO(4))(n) [trpy = 2,2':6',2' '-terpyridine; L = 2,2'-dipyridylamine; and X = Cl(-), n = 1 (1); X = H(2)O, n = 2 (2); X = NO(2)(-), n = 1 (3); X = NO(+), n = 3 (4)] were synthesized in a stepwise manner starting from Ru(III)(trpy)(Cl)(3). The single-crystal X-ray structures of all of the four members (1-4) were determined. The Ru(III)/Ru(II) couple of 1 and 3 appeared at 0.64 and 0.88 V versus the saturated calomel electrode in acetonitrile. The aqua complex 2 exhibited a metal-based couple at 0.48 V in water, and the potential increased linearly with the decrease in pH. The electron-proton content of the redox process over the pH range of 6.8-1.0 was calculated to be a 2e(-)/1H(+) process. However, the chemical oxidation of 2 by an aq Ce(IV) solution in 1 N H(2)SO(4) led to the direct formation of corresponding oxo species [Ru(IV)(trpy)(L)(O)](2+) via the concerted 2e(-)/2H(+) oxidation process. The two successive reductions of the coordinated nitrosyl function of 4 appeared at +0.34 and -0.34 V corresponding to Ru(II)-NO(+) --> Ru(II)-NO* and Ru(II)-NO* --> Ru(II)-NO(-), respectively. The one-electron-reduced Ru(II)-NO* species exhibited a free-radical electron paramagnetic resonance signal at g = 1.990 with nitrogen hyperfine structures at 77 K. The NO stretching frequency of 4 (1945 cm(-1)) was shifted to 1830 cm(-1) in the case of [Ru(II)(trpy)(L)(NO*)](2+). In aqueous solution, the nitrosyl complex 4 slowly transformed to the nitro derivative 3 with the pseudo-first-order rate constant of k(298)/s(-1) = 1.7 x 10(-4). The chloro complex 1 exhibited a dual luminescence at 650 and 715 nm with excited-state lifetimes of 6 and 1 micros, respectively.  相似文献   

9.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

10.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

11.
The interaction of [Ru(III)(edta)(H(2)O)](-) (1) (edta = ethylenediaminetetraacetate) with the oxygen transfer agent HOBr, was studied kinetically as a function of [HOBr] and temperature (5-35 degrees C) at a fixed pH of 6.2. Spectroscopic evidence is reported for the formation of a high valent intermediate (edta)Ru(V)=O complex. Water soluble 2,2'-azobis(3-ethylbenzithiazoline-6-sulfonate) (ABTS) was employed as a trap for this intermediate in order to gain further mechanistic information. Reactions were carried out under pseudo-first conditions for [ABTS] > [HOBr] > [1], and were monitored as a function of time for the formation of the one-electron oxidation product ABTS(*+). The reported kinetic data are interpreted in terms of a suggested reaction mechanism and discussed in reference to data reported before.  相似文献   

12.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

13.
We report the dimerization of a mono-ruthenium(III) substituted alpha-Keggin-type tungstosilicate [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) to a micro-oxo-bridged dimer [{alpha-SiW(11)O(39)Ru(m)}2O](n-) (m = III, n = 12; m = IV/III, n = 11; m = IV, n = 10). Single crystal X-ray structure analysis of Rb(10)[{alpha-SiW(11)O(39)Ru(IV)}2O].9.5H2O (triclinic, P1, with a = 12.7650(6) A, b = 18.9399(10) A, c = 20.2290(10) A, alpha = 72.876(3) degrees, beta = 88.447(3) degrees, gamma = 80.926(3) degrees, V = 4614.5(4) A(3), Z = 2) reveals that two mono-ruthenium substituted tungstosilicate alpha-Keggin units are connected through micro-oxo-bridging Ru-O-Ru bonds. Solution (183)W-NMR of [{SiW(11)O(39)Ru(IV)}2O](10-) resulted in six peaks (-63, -92, -110, -128, -132, and -143 ppm, intensities 2 : 2 : 1 : 2 : 2 : 2) confirming that the micro-oxo bridged dimer structure is maintained in aqueous solution. The dimerization mechanism is presumably initiated by deprotonation of the aqua-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(H2O)](5-) leading to a hydroxy-ruthenium complex [alpha-SiW(11)O(39)Ru(III)(OH)](6-). Dimerization of two hydroxy-ruthenium complexes produces the micro-oxo bridged dimer [{alpha-SiW(11)O(39)Ru(III)}2O](12-) and a water molecule. The Ru(III) containing dimer is oxidized by molecular oxygen to produce a mixed valence species [{alpha-SiW(11)O(39)Ru(IV-III)}2O](11-), and further oxidation results in the Ru(IV) containing [{alpha-SiW(11)O(39)Ru(IV)}2O](10-).  相似文献   

14.
Catalytic water oxidation to generate oxygen was achieved using all-inorganic mononuclear ruthenium complexes bearing Keggin-type lacunary heteropolytungstate, [Ru(III)(H(2)O)SiW(11)O(39)](5-) (1) and [Ru(III)(H(2)O)GeW(11)O(39)](5-) (2), as catalysts with (NH(4))(2)[Ce(IV)(NO(3))(6)] (CAN) as a one-electron oxidant in water. The oxygen atoms of evolved oxygen come from water as confirmed by isotope-labeled experiments. Cyclic voltammetric measurements of 1 and 2 at various pH's indicate that both complexes 1 and 2 exhibit three one-electron redox couples based on ruthenium center. The Pourbaix diagrams (plots of E(1/2) vs pH) support that the Ru(III) complexes are oxidized to the Ru(V)-oxo complexes with CAN. The Ru(V)-oxo complex derived from 1 was detected by UV-visible absorption, EPR, and resonance Raman measurements in situ as an active species during the water oxidation reaction. This indicates that the Ru(V)-oxo complex is involved in the rate-determining step of the catalytic cycle of water oxidation. The overall catalytic mechanism of water oxidation was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates. Complex 2 exhibited a higher catalytic reactivity for the water oxidation with CAN than did complex 1.  相似文献   

15.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

16.
The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.  相似文献   

17.
Three new Ru-aqua complexes containing a mixed carbene and pyridylic ligands with general formulas [Ru(CNC)(bpy)(H2O)](PF6)2 (1) (CNC is 2,6-bis(butylimidazol-2-ylidene)pyridine; bpy is 2,2'-bipyridine) and cis-/trans-[Ru(CNC)(nBu-CN)(H2O)](PF6)2 (cis-2 and trans-2) (nBu-CN is 2-(butylimidazol-2-ylidene)pyridine) have been prepared and structurally characterized both in the solid state (monocrystal X-ray diffraction analysis for 1 and for the related complex trans-[Ru(Br)(CNC)(nBu-CN)](PF6)) and in solution (for all of them) through NMR. The electrochemical properties of these three Ru-aqua complexes have been investigated by cyclic voltammetry, differential pulse voltammetry and Coulombimetric techniques. It is found that, for complex 1 at pH 7, the difference between the IV/III and the III/II redox couples (DeltaE1/2) is 50 mV, which is the smallest ever reported for this type of complex. On the other hand, for complexes cis-2 and trans-2, the oxidation state III is unstable with respect to disproportionation to II and IV. The reactivity of their Ru=O species has been tested toward cis-beta-methylstyrene oxidation, and it has been compared to [Ru(O)(trpy)(bpy)]2+. An inverse correlation between the degree of cis/trans-epoxide isomerization and DeltaE1/2 is found. In particular, for complexes cis-2 and trans-2, which have a DeltaE1/2 < 0, the epoxidation is highly stereoselective, yielding only cis-epoxide.  相似文献   

18.
A cyanide-bridged molecular square of [Ru(II) (2)Fe(II) (2)(mu-CN)(4)(bpy)(8)](PF(6))(4).CHCl(3).H(2)O, abbreviated as [Ru(II) (2)Fe(II) (2)](PF(6))(4), has been synthesised and electrochemically generated mixed-valence states have been studied by spectroelectrochemical methods. The complex cation of [Ru(II) (2)Fe(II) (2)](4+) is nearly a square and is composed of alternate Ru(II) and Fe(II) ions bridged by four cyanide ions. The cyclic voltammogram (CV) of [Ru(II) (2)Fe(II) (2)](PF(6))(4) in acetonitrile showed four quasireversible waves at 0.69, 0.94, 1.42 and 1.70 V (vs. SSCE), which correspond to the four one-electron redox processes of [Ru(II) (2)Fe(II) (2)](4+) right arrow over left arrow [Ru(II) (2)Fe(II)Fe(III)] (5+) right arrow over left arrow [Ru(II) (2)Fe(III) (2)](6+) right arrow over left arrow [Ru(II)Ru(III)Fe(III) (2)](7+) right arrow over left arrow [Ru(III) (2)Fe(III) (2)](8+). Electrochemically generated [Ru(II) (2)Fe(II)Fe(III)](5+) and [Ru(II) (2)Fe(III) (2)](6+) showed new absorption bands at 2350 nm (epsilon =5500 M(-1) cm(-1)) and 1560 nm (epsilon =10 500 M(-1) cm(-1)), respectively, which were assigned to the intramolecular IT (intervalence transfer) bands from Fe(II) to Fe(III) and from Ru(II) to Fe(III) ions, respectively. The electronic interaction matrix elements (H(AB)) and the degrees of electronic delocalisation (alpha(2)) were estimated to be 1090 cm(-1) and 0.065 for the [Ru(II) (2)Fe(II)Fe(III) (2)](5+) state and 1990 cm(-1) and 0.065 for the [Ru(II) (2)Fe(III) (2)](6+) states.  相似文献   

19.
The synthesis and spectroscopic characterisation of novel mononuclear Ru(III)(edta)(hydroxamato) complexes of general formula [Ru(H2edta)(monoha)] (where monoha = 3- or 4-NH2, 2-, 3- or 4-C1 and 3-Me-phenylhydroxamato), as well as the first example of a Ru(III)-N-aryl aromatic hydroxamate, [Ru(H2edta)(N-Me-bha)].H2O (N-Me-bha = N-methylbenzohydroxamato) are reported. Three dinuclear Ru(III) complexes with bridging dihydroxamato ligands of general formula [{Ru(H2edta)}2(mu-diha)] where diha = 2,6-pyridinedihydroxamato and 1,3- or 1,4-benzodihydroxamato, the first of their kind with Ru(III), are also described. The speciation of all of these systems (with the exception of the Ru-1,4-benzodihydroxamic acid and Ru-N-methylbenzohydroxamic systems) in aqueous solution was investigated. We previously proposed that nitrosyl abstraction from hydroxamic acids by Ru(III) involves initial formation of Ru(III)-hydroxamates. Yet, until now, no data on the rate of nitric oxide (NO) release from hydroxamic acids has been published. We now describe a UV-VIS spectroscopic study, where we monitored the decrease in the ligand-to-metal charge-transfer band of a series of Ru(III)-monohydroxamates with time, with a view to gaining an insight into the NO-releasing properties of hydroxamic acids.  相似文献   

20.
In aqueous solutions under mild conditions, [Ru(H(2)O)(6)](2+) was reacted with various water-soluble tertiary phosphines. As determined by multinuclear NMR spectroscopy, reactions with the sulfonated arylphosphines L =mtppms, ptppms and mtppts yielded only the mono- and bisphosphine complexes, [Ru(H(2)O)(5)L](2+), cis-[Ru(H(2)O)(4)L(2)](2+), and trans-[Ru(H(2)O)(4)L(2)](2+) even in a high ligand excess. With the small aliphatic phosphine L = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1(3,7)]decane (pta) at [L]:[Ru]= 12:1, the tris- and tetrakisphosphino species, [Ru(H(2)O)(3)(pta)(3)](2+), [Ru(H(2)O)(2)(pta)(4)](2+), [Ru(H(2)O)(OH)(pta)(4)](+), and [Ru(OH)(2)(pta)(4)] were also detected, albeit in minor quantities. These results have significance for the in situ preparation of Ru(II)-tertiary phosphine catalysts. The structures of the complexes trans-[Ru(H(2)O)(4)(ptaMe)(2)](tos)(4)x2H(2)O, trans-[Ru(H(2)O)(4)(ptaH)(2)](tos)(4)[middle dot]2H(2)O, and trans-mer-[RuI(2)(H(2)O)(ptaMe)(3)]I(3)x2H(2)O, containing protonated or methylated pta ligands (ptaH and ptaMe, respectively) were determined by single crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号