首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth of ice crystals has attracted attention because ice and water are ubiquitous in the environment and play critical roles in natural processes. Hexagonal ice, I(h), is the most common form of ice among 15 known crystalline phases of ice. In this work we report the results of an extensive and systematic molecular dynamics study of the temperature dependence of the crystal growth on the three primary crystal faces of hexagonal ice, the basal {0001} face, the prism {1010} face, and the secondary prism {1120} face, utilizing the TIP4P-2005 water model. New insights into the nature of its anisotropic growth are uncovered. It is demonstrated that the ice growth is indeed anisotropic; the growth and melting of the basal face are the slowest of the three faces, its maximum growth rates being 31% and 43% slower, respectively, than those of the prism and the secondary prism faces. It is also shown that application of periodic boundary conditions can lead to varying size effect for different orientations of an ice crystal caused by the anisotropic physical properties of the crystal, and results in measurably different thermodynamic melting temperatures in three systems of similar, yet moderate, size. Evidence obtained here provides the grounds on which to clarify the current understanding of ice growth on the secondary prism face of ice. We also revisit the effect of the integration time step on the crystal growth of ice in a more thorough and systematic way. Careful evaluation demonstrates that increasing the integration time step size measurably affects the free energy of the bulk phases and shifts the temperature dependence of the growth rate curve to lower temperatures by approximately 1 K when the step is changed from 1 fs to 2 fs, and by 3 K when 3 fs steps are used. A thorough investigation of the numerical aspects of the simulations exposes important consequences of the simulation parameter choices upon the delicate dynamic balance that is involved in ice crystal growth.  相似文献   

2.
We present a molecular dynamics study of ice growth from supercooled water. By performing a series of simulations with different initial conditions, we have quantitative established the relationship existing between the critical nucleus size and the temperature. The results show that ice embryos containing hundreds or thousands of molecules are needed for the system to crystallize macroscopically, even at high degrees of supercooling. Our findings explain the difficulty in observing spontaneous ice nucleation in atomistic simulations and the relative ease with which water droplets can be supercooled under controlled experiments.  相似文献   

3.
P6(D6h)和P12(D6h的从头算研究   总被引:2,自引:1,他引:2  
利用Gaussian-92从头算程序,在6-31G ̄*基组下优化P_6(D_6h)分子和P_(12)(D_(6h))原子簇,并进行了振动频率的计算.得到2P_6(D_(6h))→P_(12)(D_(6h))总能量的相对值,即△E=E_P_(12_(D_(6h))-2EP_6(D_(6h))=-1.197eV. P_(12)(D_(6h))原子簇较2P_6(D_(6h))分子在热力学上更为稳定。基组下,Hp=HP优化的P=P双键键长为0.2005nm,H2P─PH2优化的P─P单键键长为0.2214nm,显然,P6(D6h)分子中的键长比优化双键长0.0091nm,比优化单键短0.0118nm,对于P6(D6h)分子而言,其键长介于单、双键之间且相等。P6分子前线轨道的第39条分子轨道形式估算为:联系人及第一作者:冯健男,男,25岁,博士研究生。  相似文献   

4.
We have studied the excited-state proton-transfer rate of four photoacids in ice as a function of temperature. For all four photoacids, we have found a non Arrhenius behavior of the proton-transfer rate constant, k(PT). d(ln k(PT))/d(1/T) decreases as the temperature decreases. The average slope of ln(k(PT))versus 1/T depends on the photoacid strength (pK*). The stronger the photoacid is, the smaller the slope. For the strongest photoacid 2-naphthol-6,8-disulfonate (2N68DS) the largest slope is 35 kJ/mol at about 270 K, and the smallest measured slope is about 8 kJ/mol at about 215 K. We propose that the temperature dependence of k(PT) in ice at the temperature range 270 > T > 200 K can be explained as arising from contributions of two proton-transfer mechanisms over the barrier and tunneling under the barrier. At very low temperatures T < 200 K, the slope of ln(k(PT)) versus 1/T increases again. At about 170 K, the proton-transfer rate is much slower than the radiative rate, and the deprotonated form of the photoacid cannot be detected in the steady-state emission spectrum. At lower temperatures, T < 200 K, the rate further decreases because of a limitation on the reaction caused by the restrictions on the H2O hydrogen reorientations.  相似文献   

5.
This study examines the validity of the spectroscopic modification of the Pippard relations for the hexagonal ice (ice I) close to the melting point. A linear variation of the specific heat CP with the frequency shifts EQUATION: SEE TEXT is obtained for ice I. This linearity is also obtained between thermal expansivity alphaP and the frequency shifts EQUATION: SEE TEXT close to the melting point in this crystal.  相似文献   

6.
In the present study we characterized the microstructures of the Lc and HII phases in a glycerol monooleate (GMO)/tricaprylin (TAG)/water mixture as a function of temperature. We studied the factors that govern the formation of a low-viscosity HII phase at relatively elevated temperatures (>35 degrees C). This phase has very valuable physical characteristics and properties. The techniques used were differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The reverse hexagonal phase exhibited relatively rapid flow of water in the inner channels within the densely packed cylindrical aggregates of GMO with TAG molecules located in the interstices. The existence of two water diffusion peaks reflects the existence of both mobile water and hydration water at the GMO-water interface (hydrogen exchange between the GMO hydroxyls and water molecules). Above 35 degrees C, the sample became fluid yet hexagonal symmetry was maintained. The fluidity of the HII phase is explained by a significant reduction in the domain size and also perhaps cylinder length. This phenomenon was characterized by higher mobility of the GMO, lower mobility of the water, and a significant dehydration process.  相似文献   

7.
8.
Careful examination of x-ray diffraction patterns from melt-crystallized nylon 11 films show significant discrepancies with the proposed α-form structure. These discrepancies do not disappear after the samples have been annealed. The temperature dependence of the d spacings of the two strongest peaks show further evidence that the melt-crystallized and solution-cast films (α form) possess different crystal structures. These results suggest a different crystal structure for the melt-crystallized films; this would help explain the rather low piezoelectric response of these films and also the failure to observe a rapid decrease in polarization at the transition temperature.  相似文献   

9.
Particle-particle pulloff adherence forces were measured as a function of temperature in the ice/n-decane/ice and tetrahydrofuran (THF) hydrate/n-decane/THF hydrate systems using a newly developed micromechanical testing technique. Experiments using approximately 200 microm radius particles were performed at atmospheric pressure over the temperature range 263-275 K. The ice and hydrate particles displayed very similar behavior. While the measured adherence forces had significant variation, the shapes of the cumulative force distribution curves were similar among the different sets of experiments. The measured adherence forces distributions shifted to lower force values as the temperature was decreased from the solid melting temperature. The observed forces and trends were explained by the capillary cohesion of rough surfaces, with the capillary bridging liquid being stabilized below its freezing point by the negative curvature of the bridging liquid/n-decane interface.  相似文献   

10.
Sum frequency generation spectroscopy has been used to investigate the hydrogen-bonded region of single-crystal, hexagonal ice in the temperature range of 113-178 K. The temperature and polarization dependences of the signal are used in conjunction with a recent theoretical model to suggest an interpretation of the bluest and reddest of the hydrogen-bonded peaks. The reddest feature is associated with strong hydrogen bonding; the dynamic polarizability of this feature is primarily parallel to the surface. It is assigned to a cooperative motion among the companion to the free-OH and four-coordinate oscillators hydrogen bonded to dangling lone-pair molecules on the surface. The bluest hydrogen-bonded feature is similarly assigned to a cooperative motion of the OH stretch of dangling lone-pair molecules and of four-coordinate molecules in the lower half bilayer that are hydrogen bonded to free-OH molecules. Reconstruction induced strain is present at as low as 113 K. These results provide a richer picture of the ice surface than has heretofore been possible.  相似文献   

11.
The temperature dependence of dielectric constants and splay elastic constants for fluorinated phenyl bicyclohexane (PBC) binary liquid crystal (LC) mixtures is reported. The results show that the proportions of the constituent elements of binary mixtures strongly influence their anisotropic dielectric constants. For mixtures in which meta-para- and ortho-para-fluorine-substituted molecules are in equal proportion, the effectiveness of the anisotropic dielectric is equal to that with a single para-fluorine- substituted compound. The proportions of a mixture seldom affect the threshold voltage and splay elastic constants in an anti-parallel measurement cell.  相似文献   

12.
The spherulitic growth data that exist in the literature for a wide diversity of polymers have been analyzed according to various possible nucleation mechanisms. It is demonstrated that, if allowed a reasonable choice for the equilibrium melting temperature, no unbiased selection of a unique nucleation process can be made. Moreover, a set of universal parameters exists for each of the allowable nucleation processes which enables the data to be represented by a single straight line which encompasses all the polymers. The only quantities specific to a given polymer are the equilibrium melting temperature and the activation energy for transport. The magnitude of the latter quantity is shown to be dependent on the glass temperature of the polymer.  相似文献   

13.
Spontaneous self-assembling, such as formation of molecular crystals, is a fascinating topic for investigation. Ability to initiate and control such transformations promises numerous benefits, but our knowledge of underlying mechanisms of such processes is rather limited. The process of freezing of water is an excellent testing ground for such studies. In this paper we report the results of a systematic molecular dynamics study of ice growth at three different temperatures below the melting point initiated from a number of initial interface structures within the isoconfigurational ensemble. It is shown that a specific structure at a growing ice-water interface is able to affect the growth process over a time scale of 1-2 ns. This structural effect can be characterized in terms of relative growth propensities. On the basis of the differences in the shape between isoconfigurational rate distributions and the rate distribution typical of the specific temperature several different kinds of relative growth propensities have been identified. The initial interfacial configurations employed in this work have been assigned using the proposed classification and possible mechanisms of propensity realization have been suggested for selected cases. Results reported in this paper clearly indicate that local structure effects can have significant impact on tendency for a particular ice surface to grow (or melt). The structural effect on ordering propensities is, most probably, a more universal behaviour and might be expected to be seen in other similar problems such as, for example, protein folding.  相似文献   

14.
We present a molecular dynamics simulation study in which we determined the melting point of ice I(h) for the polarizable SWM4-NDP water model (Lamoureux et al., Chem. Phys. Lett., 2006, 418, 245-249) and compared the performance of several popular water force fields, both polarizable and nonpolarizable, in terms of melting temperature, stability and orientational structuring of ice. The simulations yield the melting temperature of SWM4-NDP ice as low as T(m) = 185 ± 10 K, despite the quadrupole moment of a SWM4-NDP water molecule being close to the experimental gas phase value. The results thus show that the dependence of T(m) on the molecular quadrupole, observed for the three- and four-site water models, is generally lost if polarization is explicitly included. The study also shows that adding polarizability to a planar three-charge water model increases orientational disorder in hexagonal ice. In addition, analysis of the tetrahedral order in bulk ice reveals a correlation between the pre-existing degree of orientational disorder in ice simulated using different polarizable and nonpolarizable models and the melting temperature of the models. Our findings thus suggest some new considerations regarding the role of polarization forces in a crystalline solid that may guide future development of reliable polarizable water models for ice.  相似文献   

15.
16.
J.-W. Han 《Liquid crystals》2013,40(10):1487-1493
Polymer dispersed liquid crystal (PDLC) films consist of microdroplets of a liquid crystal dispersed in a polymer matrix. Their applications are based on the electrically controllable light scattering properties of the liquid crystal droplets. The effects of temperature on the electro-optical properties of PDLC films have been rarely investigated. In this work, we studied the light transmission on varying the temperature and frequency. It was observed that the transmission at a fixed voltage decreased with increasing temperature above 43°C, independent of frequency. We examined possible origins of this unusual dependence of the transmission on the temperature. It was concluded that conductivity effects due to free ions newly created at high temperatures could be responsible for the unusual behaviour observed.  相似文献   

17.
《Liquid crystals》2001,28(10):1487-1493
Polymer dispersed liquid crystal (PDLC) films consist of microdroplets of a liquid crystal dispersed in a polymer matrix. Their applications are based on the electrically controllable light scattering properties of the liquid crystal droplets. The effects of temperature on the electro-optical properties of PDLC films have been rarely investigated. In this work, we studied the light transmission on varying the temperature and frequency. It was observed that the transmission at a fixed voltage decreased with increasing temperature above 43°C, independent of frequency. We examined possible origins of this unusual dependence of the transmission on the temperature. It was concluded that conductivity effects due to free ions newly created at high temperatures could be responsible for the unusual behaviour observed.  相似文献   

18.
We use classical molecular dynamics combined with the recently developed metadynamics method [Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 20] to study the process of bulk melting in hexagonal ice. Our simulations show that bulk melting is mediated by the formation of topological defects which preserve the coordination of the tetrahedral network. Such defects cluster to form a defective region involving about 50 molecules with a surprisingly long lifetime. The subsequent formation of coordination defects triggers the transition to the liquid state.  相似文献   

19.
We use molecular dynamics simulations to determine the melting point of ice I(h) for the polarizable POL3 water force field (Dang, L. X. J. Chem. Phys.1992, 97, 2659). Simulations are performed on a slab of ice I(h) with two free surfaces at several different temperatures. The analysis of the time evolution of the total energy in the course of the simulations at the set of temperatures yields the melting point of the POL3 model to be T(m) = 180 ± 10 K. Moreover, the results of the simulations show that the degree of hydrogen-bond disorder occurring in the bulk of POL3 ice is larger (at the corresponding degree of undercooling) than in ice modeled by nonpolarizable water models. These results demonstrate that the POL3 water force field is rather a poor model for studying ice and ice-liquid or ice-vapor interfaces. While a number of polarizable water models have been developed over the past years, little is known about their performance in simulations of supercooled water and ice. This study thus highlights the need for testing of the existing polarizable water models over a broad range of temperatures, pressures, and phases, and developing a new polarizable water force field, reliable over larger areas of the phase diagram.  相似文献   

20.
We have studied the solvation statics and dynamics of coumarin 343 and a strong photoacid (pK* approximately 0.7) 2-naphthol-6, 8-disulfonate (2N68DS) in methanol-doped ice (1% molar concentration of methanol) and in cold liquid ethanol in the temperature range of 160-270 K. Both probe molecules show a relatively fast solvation dynamics in ice, ranging from a few tens of picoseconds at about 240 K to nanoseconds at about 160 K. At about 160 K in doped ice, we observe a sharp decrease of the dynamic Stokes shift of both coumarin 343 and 2N68DS. Its value is approximately only 200 cm-1 at approximately 160 K compared to about 1100 cm-1 at T >/= 200 K (at times longer than t > 10 ps). We find a good correlation between the inefficient and slow excited-state proton-transfer rate at low-temperature ice, T < 180 K, and the dramatic decrease of the solvation energy, as measured by the dynamic band shift, at these low temperatures. We find that the average solvation rate in ice is similar to its value in liquid ethanol at all given temperatures in the range of 200-250 K. The surprisingly fast solvation rate in ice is explained by the relatively large freedom of the water hydrogen rotation in ice Ih.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号