共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu Y Yang D 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,79(1):213-218
The combined density functional theory (DFT) and time-dependent density functional theory (TDDFT) method was used to study the electronic spectral properties of different deprotonated forms of esculetin. By comparing the experimental absorption and fluorescence bands with the calculated electronic spectra, it is evidently demonstrated that the minor absorption and fluorescence bands observed at slightly longer wavelengths than the principal bands in experiments are predominantly from the de-H3 form of the esculetin monomer. Furthermore, we clarified the relationship between electronic spectral shifts and electronic excited-state intramolecular hydrogen bonding changes: the strengthening of intramolecular hydrogen bond can induce an electronic spectral blueshift while the intramolecular hydrogen bond weakening can result in an electronic spectral redshift. 相似文献
2.
Yufang Liu Junxia Ding Ruiqiong Liu Deheng Shi Jinfeng Sun 《Journal of computational chemistry》2009,30(16):2723-2727
The geometric structures and infrared (IR) spectra in the electronically excited state of a novel doubly hydrogen‐bonded complex formed by fluorenone and alcohols, which has been observed by IR spectra in experimental study, are investigated by the time‐dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in both ground state and the S1 state of this doubly hydrogen‐bonded FN‐2MeOH complex are calculated using the DFT and TDDFT methods, respectively. Two intermolecular hydrogen bonds are formed between FN and methanol molecules in the doubly hydrogen‐bonded FN‐2MeOH complex. Moreover, the formation of the second intermolecular hydrogen bond can make the first intermolecular hydrogen bond become slightly weak. Furthermore, it is confirmed that the spectral shoulder at around 1700 cm?1 observed in the IR spectra should be assigned as the doubly hydrogen‐bonded FN‐2MeOH complex from our calculated results. The electronic excited‐state hydrogen bonding dynamics is also studied by monitoring some vibraitonal modes related to the formation of hydrogen bonds in different electronic states. As a result, both the two intermolecular hydrogen bonds are significantly strengthened in the S1 state of the doubly hydrogen‐bonded FN‐2MeOH complex. The hydrogen bond strengthening in the electronically excited state is similar to the previous study on the singly hydrogen‐bonded FN‐MeOH complex and play important role on the photophysics of fluorenone in solutions. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009 相似文献
3.
Time-dependent density functional theory (TD-DFT) method was used to study the excited-state hydrogen bonding of three esculetin complexes formed with aprotic solvents. The geometric structures, molecular orbitals (MOs), electronic spectra and the infrared (IR) spectra of the three doubly hydrogen-bonded complexes formed by esculetin and aprotic solvents dimethylsulfoxide (DMSO), tetrahyrofuran (THF) and acetonitrile (ACN) in both ground state S(0) and the first singlet excited state S(1) were calculated by the combined DFT and TD-DFT methods with the COSMO solvation model. Two intermolecular hydrogen bonds can be formed between esculetin and the aprotic solvent in each hydrogen-bonded complex. Based on the calculated bond lengths of the hydrogen bonds and the groups involved in the formation of the intermolecular hydrogen bonds in different electronic states, it is demonstrated that one of the two hydrogen bonds formed in each hydrogen-bonded complex is strengthened while the other one is weakened upon photoexcitation. Furthermore, it is found that the strength of the intermolecular hydrogen bonds formed in the three complexes becomes weaker as the solvents change from DMSO, via THF, to ACN, which is suggested to be due to the decrease of the hydrogen bond accepting (HBA) ability of the solvents. The spectral shifts of the calculated IR spectra further confirm the strengthening and weakening of the intermolecular hydrogen bonds upon the electronic excitation. The variations of the intermolecular hydrogen bond strengths in both S(0) and S(1) states are proposed to be the main reasons for the gradual spectral shifts in the absorption and fluorescence spectra both theoretically and experimentally. 相似文献
4.
Rui Wang Ce Hao Peng Li Ning‐Ning Wei Jingwen Chen Jieshan Qiu 《Journal of computational chemistry》2010,31(11):2157-2163
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
5.
Andrew E. Shchavlev Alexei N. Pankratov Alexei V. Shalabay 《International journal of quantum chemistry》2006,106(4):876-886
Intramolecular hydrogen binding interactions in 8‐hydroxyquinoline, both in its zwitterionic tautomer and in the rotamer without the intramolecular hydrogen bond (IHB), have been computed using the B3LYP and MPW1K density functionals. The rotation of the O? H bond and intramolecular proton transfer reactions were studied theoretically. The following theory levels have been applied: B3LYP/6‐31G(d,p), B3LYP/6‐311++G(d,p), MPW1K/6‐311++G(d,p), and MPW1K/6‐311++G(2d,3p)//MPW1K/6‐311++G(d,p). Natural bond orbital (NBO) analysis has also been carried out. The effect of medium (benzene, chloroform, tetrahydrofuran, 1,2‐dichloroethane, acetone, water) was simulated using the self‐consistent reaction field (SCRF) method within the framework of the polarizable continuum model (PCM), at the MPW1K/6‐311++G(d,p) level. The evolution of geometry, relative energies, heights of rotation (around the O? H bond) and tautomerization barriers, IHB energies, and ΔG(solv) have been systematically investigated. The results obtained have shown the failure to neglect some changes of the above characteristics in polar media with respect to the gaseous phase. The series of stability of the forms under study in the gaseous phase remains the same in solution. Thus, in spite of the important role of the solvent electrostatic effects, the intrinsic stability of those species overcomes the solvent effects. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 相似文献
6.
Shu‐Hui Yin Yufang Liu Wei Zhang Ming‐Xing Guo Peng Song 《Journal of computational chemistry》2010,31(10):2056-2062
In this work, the time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer excited state of 2‐(4′‐N,N‐dimethylaminophenyl)imidazo[4,5‐b]pyridine (DMAPIP) in methanol (MeOH) solvent. All the geometric conformations of the ground state and locally excited (LE) state and the twisted intramolecular charge‐transfer (TICT) state for isolated DMAPIP and its hydrogen‐bonded complexes have been optimized. At the same time, the absorption and fluorescence spectra of DMAPIP and the hydrogen‐bonded complexes in different electronic states are also calculated. We theoretically demonstrated for the first time that the intermolecular hydrogen bond formed between DMAPIP and MeOH can induce the formation of the TICT state for DMAPIP in MeOH solvent. Therefore, the two components at 414 and 506 nm observed in the fluorescence spectra of DMAPIP in MeOH solvent were reassigned in this work. The fluorescence peak at 414 nm is confirmed to be the LE state. Furthermore, the red‐shifted shoulder at 506 nm should be originated from the hydrogen‐bonded TICT excited state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
7.
Remote control of hydrogen bond strengths has been studied based on conjugated donor-bridge-acceptor (pyrrole-bridge-imine) systems. The neutral and protonated states of the imine can change the hydrogen bonding ability of the pyrrole because, in the protonated state, significant partial intramolecular charge transfer (ICT) is induced that causes partial delocalization of the positive charge onto the pyrrole moiety. An efficient bridge, regardless of its length, should help electrons to flow out of pyrrole. A previously developed design strategy for the bridge (low bridge HOMO/LUMO) leads to the study of cyano- and fluoro-substituted conjugated systems. Substitution positions are found to be of key importance for maximizing the protonation-induced response from the donor-bridge-acceptor systems. Our results not only help to identify useful bridge substitution patterns, but also highlight interesting issues regarding the bridge conformation and the fluorine lone-pair effect. 相似文献
8.
Akira Shigenaga Hiroko HirakawaJun Yamamoto Keiji OguraMasaya Denda Keiko YamaguchiDaisuke Tsuji Kohji ItohAkira Otaka 《Tetrahedron》2011,67(22):3984-3990
Sphingolipids, recognized as membrane constructs and as key signaling molecules, have been studied to examine intracellular function. Some caged sphingolipids that release parent sphingolipids after exposure to UV-irradiation have been previously developed, but caged ceramide has yet to be reported. In this study, we report the design and synthesis of a caged ceramide. Photo-irradiation experiment clarified that the caged ceramide can be successfully converted to the parent ceramide by UV-irradiation. Introduction of an alkyne-handle moiety for further modification of the caged ceramide is also reported. 相似文献
9.
This work is an attempt to evaluate the ability of protonation of 8-oxo-2′-deoxyguanosine (8-oxodG) and the effects of oxidation and protonation on its N-glycosidic bond stability by using the density functional theory B3LYP/6-31++G(d, p) method. In all modified forms, the length of the N9–C1′ bond increases as compared to the neutral system 8-oxodG. Especially, the changes are much more obvious for the di-cationic systems. The analysis for the ability of protonation indicates that for the mono-protonated systems, the O8 atom becomes the preferred protonation site in the gas phase. From the dissociation energies of the N-glycosidic bond, it has been found that the homolytic cleavage becomes more difficult upon introducing positive charge in the base ring. In contrast, these systems favor significantly the heterolytic cleavage, especially for the di-cationic systems in which the dissociation energy values are negative. The influence is most prominent with the mono-cation obtained by O8 protonation. 相似文献
10.
A. Koll V. Parasuk W. Parasuk A. Karpfen P. Wolschann 《Journal of Molecular Structure》2004,700(1-3):81-174
Ab initio and density functional calculations are applied to study the influence of an increasing number of chlorine substituents on the properties of the intramolecular hydrogen bond in substituted Mannich bases. It is shown, that not only the acidity of the proton donor, which depends on the number of chlorine atoms at the aromatic ring, but also steric interactions modify the geometry of the hydrogen bond. Specific interactions of O–ClH–O hydrogen-bonding in some derivatives are estimated by calculations on related chlorophenols. 相似文献
11.
A. Nowroozi H. Raissi H. Hajiabadi P. Mohammadzadeh Jahani 《International journal of quantum chemistry》2011,111(12):3040-3047
The RAHB systems in malonaldehyde and its derivatives at MP2/ 6‐311++G(d,p) level of theory were studied and their intramolecular hydrogen bond energies by using the related rotamers method was obtained. The topological properties of electron density distribution in O? H···O intramolecular hydrogen bond have been analyzed in term of quantum theory of atoms in molecules (QTAIM). Correlations between the H‐bond strength and topological parameters are probed. The results of QTAIM clearly showed that the linear correlation between the electron density distribution at HB critical point and RAHB ring critical point with the corresponding hydrogen bond energies was obtained. Moreover, it was found a linear correlation between the electronic potential energy density, V(rcp), and hydrogen bond energy which can be used as a simple equation for evaluation of HB energy in complex RAHB systems. Finally, the similar linear treatment between the geometrical parameters, such as O···O or O? H distance, and Lp(O)→σ*OH charge transfer energy with the intramolecular hydrogen bond energy is observed. © 2010 Wiley Periodicals, Inc., Int J Quantum Chem, 2011 相似文献
12.
Guang‐Yue Li Guang‐Jiu Zhao Ke‐Li Han Guo‐Zhong He 《Journal of computational chemistry》2011,32(4):668-674
Proton transfer (PT) and excited‐state PT process are proposed to account for the fluorescent sensing mechanism of a cyanide chemosensor, 8‐formyl‐7‐hydroxycoumarin. The time‐dependent density functional theory method has been applied to investigate the ground and the first singlet excited electronic states of this chemosensor as well as its nucleophilic addition product with cyanide, with a view to monitoring their geometries and spectrophotometrical properties. The present theoretical study indicates that phenol proton of the chemosensor transfers to the formyl group along the intramolecular hydrogen bond in the first singlet excited state. Correspondingly, the nucleophilic addition product undergoes a PT process in the ground state, and shows a similar structure in the first singlet excited state. This could explain the observed strong fluorescence upon the addition of the cyanide anion in the relevant fluorescent sensing mechanism. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011 相似文献
13.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(7):508-516
In the structure of 2‐(4‐chloroanilino)‐1,3,2λ4‐diazaphosphol‐2‐one, C12H11ClN3OP, each molecule is connected with four neighbouring molecules through (N—H)2…O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 33(12) and R 43(14) hydrogen‐bond ring motifs, combined with a C (4) chain motif. The hole constructed in the tubular architecture includes a 12‐atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N—H groups of the diazaphosphole ring, not co‐operating in classical hydrogen bonding, takes part in an N—H…π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen‐bond pattern. The energies of the N—H…O and N—H…π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen‐bonded cluster of molecules as the input file for the chemical calculations. In the 1H NMR experiment, the nitrogen‐bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2J H–P coupling constant. 相似文献
14.
The time-dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen-bonded intramolecular charge-transfer (ICT) excited state of 4-dimethylaminobenzonitrile (DMABN) in methanol (MeOH) solvent. We demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O formed between DMABN and MeOH can induce the C[triple bond]N stretching mode shift to the blue in both the ground state and the twisted intramolecular charge-transfer (TICT) state of DMABN. Therefore, the two components at 2091 and 2109 cm(-1) observed in the time-resolved infrared (TRIR) absorption spectra of DMABN in MeOH solvent were reassigned in this work. The hydrogen-bonded TICT state should correspond to the blue-side component at 2109 cm(-1), whereas not the red-side component at 2091 cm(-1) designated in the previous study. It was also demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O is significantly strengthened in the TICT state. The intermolecular hydrogen bond strengthening in the TICT state can facilitate the deactivation of the excited state via internal conversion (IC), and thus account for the fluorescence quenching of DMABN in protic solvents. Furthermore, the dynamic equilibrium of these electronically excited states is explained by the hydrogen bond strengthening in the TICT state. 相似文献
15.
Huang XS Liu X Constantine KL Leet JE Roongta V 《Magnetic resonance in chemistry : MRC》2007,45(6):447-450
We report here the observation of O-H...N hydrogen-bond (1h)J(N,OH) scalar coupling in a biologically active natural product. The intramolecular hydrogen bond between the threonine hydroxyl (Thr-OH) group and the thiazolyl nitrogen at the second thiazole ring (Thz-2) in nocathiacin I was directly detected by a 1H-15N HMBC NMR experiment. The magnitude of the scalar coupling constant (1h)J(N,OH) was accurately measured to be 1.8 +/- 0.1 Hz by a J-resolved 1H-15N HMBC experiment. By adding the O-H...N distance restraint, the 3D solution structure of nocathiacin I was refined. The structure refinement indicated that the distance between the Thr-3 hydroxyl hydrogen and the Thz-2 nitrogen is or= 0.23 A. The presence of an intramolecular hydrogen bond in nocathiacin I is further supported by a number of NMR parameters and additional NMR experiments. This observation provides valuable information for characterizing molecular conformations, and for studying structure-activity relationships. 相似文献
16.
Qingping Long Hongbing Ji Shushen Lv 《International journal of quantum chemistry》2009,109(3):448-458
Hydrogen bonds of phenol–cyclohexanone and phenol–H2O2 in the studied Baeyer–Villiger (B–V) oxidation have been investigated by HF, B3LYP, and MP2 methods with various basis sets. The accurate single‐point energies were performed using CCSD(T)/6‐31+G(d,p) and CCSD(T)/aug‐cc‐pVDZ on the optimized geometries of MP2/6‐31+G(d,p). It has been confirmed that B3LYP/6‐31+G(d,p) could be used to study such hydrogen bonds. Energetic analysis of complexes was carried out using the Xantheas method with BSSE corrected by CP method. Orbital energy order (ε) illuminated that phenol with good hydrogen donor‐acceptor property can interact with cyclohexanone or H2O2 to form hydrogen bound complexes, and the binding energies (BE) range from ?4.38 to ?14.06 kcal mol?1. NBO analysis indicated that the redistribution of atomic charges in the complexes facilitated nucleophilic attack of H2O2 on cyclohexanone. The calculated results match remarkably well with the experimental phenomena. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 相似文献
17.
The electronic structure of the following organic molecules is studied using the HF/6-311G(d,p) method: malonic dialdehyde, acetylacetone, thiomalonic aldehyde, 2-XC6H4NH2 aniline derivatives, 2-XC6H4OH phenol derivatives, 2-XC6H4SH thiophenol derivatives (X = CHO, COOH, COO?, NO, NO2, OH, OCH3, SH, SCH3, F, Cl, Br), 8-hydroxyquinoline, 8-mercaptoquinoline, tropolone. It is found that the intramolecular hydrogen bond (IHB) leads to a local electronic redistribution in the quasi-cycle, and above all to the electron density transfer among the immediate participants of IHB — from the hydrogen atom to the proton-acceptor atom. When the IHB of the S-H?O type forms, the electron density mainly decreases on sulfhydryl hydrogen atom and increases on sulfur atom. 相似文献
18.
Kakali Sen Samita Basu Dhananjay Bhattacharyya 《International journal of quantum chemistry》2005,102(4):368-378
The exciplex is a charge transfer species formed in the process of electron transfer between an electron donor and an electron acceptor and hence is very sensitive to solvent polarity. In order to understand the role of solvent in exciplex formation between pyrene (PY) and 4,4′‐bis(dimethylamino)diphenylmethane (DMDPM), we used two types of solvent approximations: an implicit solvent model and an explicit solvent model. The difference in energies between the excited and the meta‐stable Frank–Condon state (ΔE) of the structures were assumed to correspond to the emission maximum of the exciplex in different solvents. The ΔE values show the trend of stabilization of the exciplex with an increase in solvent polarity. This trend in stabilization is substantially more prominent in the explicit solvent model than that with the implicit solvent model. The ΔE value obtained in methanol reflects equal stabilization compared to that in a more polar solvent, N,N‐dimethylformamide. This extra stabilization of the exciplex may be explained on the basis of the H‐bonding capability of the protic solvent, methanol. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 相似文献
19.
20.
Ab initio SCF calculations have been performed for the methyl internal rotation and for aldehyde hydrogen wagging of thioacetaldehyde in the first triplet excited state, a3A, as well as in the singlet ground state, X1A. The preferred conformations for these states are the anti-eclipsed and the eclipsed ones, respectively. The calculated barrier heights to methyl rotation (118.3 and 455.6 cm–1 for a3A and X1A, respectively) are in good agreement with the available experimental data. The singlet ground state and the triplet excited state exhibit a planar and pyramidal configuration, respectively. The inversion barrier of the pyramidal configuration is found to be very low 67.4 cm–1. Finally, the change of conformation and structure with the transition is explained by a change of hydridization of the aldehyde carbon atom due to an n
* excitation.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday 相似文献