首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rheology and flow-induced morphology were studied in immiscible polypropylene (PP)/polystyrene (PS) blends with a droplet–matrix microstructure. Two reactive precursors, maleic anhydride grafted PP and amino terminated PS, were added during the melt-mixing process to form a graft copolymer. The effects of both the amount of compatibilizer and the shear history on the rheological and morphological behavior were investigated systematically. Small amplitude oscillatory experiments and scanning electron microscopy were used to study the phase morphology. Shear history has an important effect on the morphology of the uncompatibilized blends. The droplet size refines with increasing shear rate. The decrease of this effect with increasing degrees of in situ compatibilization is mapped out. The results are discussed in terms of interfacial tension and the interfacial coverage. It turns out that most of the conclusions that were previously obtained on physically compatibilized blends are also valid for chemically compatibilized ones.  相似文献   

2.
The rheological behavior and morphology of carbon nanofiber/polystyrene (CNF/PS) composites in their melt phase have been characterized both through experimental measurements and modeling. Composites prepared in the two different processes of solvent casting and melt blending are contrasted; melt-blended and solvent-cast composites were each prepared with CNF loadings of 2, 5, and 10 wt%. A morphological study revealed that the melt blending process results in composites with shorter CNFs than in the solvent-cast composites, due to damage caused by the higher stresses the CNFs encounter in melt blending, and that both processes retain the diameter of the as-received CNFs. The addition of carbon nanofiber to the polystyrene through either melt blending or solvent casting increases the linear viscoelastic moduli, G′ and G″, and steady-state viscosity, η, in the melt phase monotonically with CNF concentration, more so in solvent cast composites with their longer CNFs. The melt phase of solvent-cast composites with higher CNF concentrations exhibit a plateau of the elastic modulus, G′, at low frequencies, an apparent yield stress, and large first normal stress difference, N 1, at low strain rates, which can be attributed to contact-based network nanostructure formed by the long CNFs. A nanostructurally-based model for CNF/PS composites in their melt phase is presented which considers the composite system as rigid rods in a viscoelastic fluid matrix. Except for two coupling parameters, all material constants in the model for the composite systems are deduced from morphological and shear flow measurements of its separate nanofiber and polymer melt constituents of the composite. These two coupling parameters are polymer–fiber interaction parameter, σ, and interfiber interaction parameter, C I. Through comparison with our experimental measurements of the composite systems, we deduce that σ is effectively 1 (corresponding to no polymer–fiber interaction) for all CNF/PS nanocomposites studied. The dependence of CNF orientation on strain rate which we observe in our experiments is captured in the model by considering the interfiber interaction parameter, C I, as a function of strain rate. Applied to shear flows, the model predicts the melt-phase, steady-state viscosities, and normal stress differences of the CNF/PS composites as functions of shear rate, polymer matrix properties, fiber length, and mass concentration consistent with our experimental measurements.  相似文献   

3.
Creep and recovery of polypropylene/carbon nanotube composites   总被引:2,自引:0,他引:2  
The creep and recovery of polypropylene/multi-walled carbon nanotube composites were studied. It was found for thermoplastics in general that the creep strain reduces with decreased temperature, and with enhanced content of carbon nanotubes. The incorporation of nanotubes improved the recovery property remarkably, especially at high temperature. The unrecovered creep strain of nanocomposites with content of 1 and 2.8 vol.% carbon nanotubes decreased by 53% and 73% compared to that of polymer matrix. To understand the mechanisms, the Burger’s model and Weibull distribution function were employed since the variations in the simulating parameters illustrated the influence of nano-fillers on the creep and recovery performance of the bulk matrix. To further study the recovery properties, the particular contribution of each Burger’s element to the total deformation was obtained and the recovery percentage was calculated. The time-temperature-superposition-principle was applied to predict the long-term creep behavior.  相似文献   

4.
The shear rheology of carbon nanotube suspensions is reviewed from the perspective of colloid and polymer science. In the semi-dilute to concentrated regimes, the nature of the equilibrium or quiescent state is often dominated by nanotube entanglement and strong attractive inter-particle interactions that favor the formation of a disordered network or gel. The strength of this network with respect to the applied stress dictates the development of mesoscale structural anisotropy, first through a global yield stress and then through a critical stress for homogenization. For concentrated suspensions, the nematic liquid-crystalline order anticipated for high-aspect-ratio rigid rods has been observed in a few select scenarios. The opportunity for deeper theoretical insight is emphasized and intuitive physical arguments are offered that might serve as a foundation for future study.  相似文献   

5.
We characterize the transient shear rheology of polystyrene/carbon nanofiber composites. Our experimental measurements of the composites show increasing stress overshoot responses to transient shear as the carbon nanofiber concentration increases. We also find the steady state viscosity reached at long times during application of a constant shear rate increases with increasing carbon nanofiber concentration. Flow reversal experiments show the effects of nanofiber orientation and structural evolution on the composite's rheological response.We present a microstructurally based constitutive model where all but two parameters are determined by rheological characterization of the pure polymer and the shape and concentration of the nanoparticles. The Folgar-Tucker constant, CI, is treated as a fitting parameter, while several definitions for the shape factors A, B, C and F are evaluated. We make note of the effects each parameter has on the model's predictions. We find that the constitutive model is in agreement with our experimentally measured transient shear rheology of the PS/CNF melt composites for the CNF concentrations and shear rates presented.  相似文献   

6.
Rheological behavior of concentrated suspensions of chemical vapor deposition carbon nanotubes in uniaxial elongation and simple shear is studied experimentally and theoretically. Nanotubes are suspended in viscous host liquids—castor oil or its blends with n-decane. The elongational measurements are performed by analyzing self-thinning (due to surface tension effect) liquid threads of nanotube suspensions. A quasi-one-dimensional model is used to describe the self-thinning process, whereas corrections accounting for thread nonuniformity and necking are introduced a posteriori. The effects of nanotube concentration and aspect ratio, viscosity of the suspending liquid, and initial diameter of the self-thinning thread in uniaxial elongation are elucidated. The results for uniaxial elongation are compared with those for simple shear. The correspondence in the results of the shear and elongational measurements is addressed and interpreted. The results conform to the Herschel–Bulkley rheological constitutive equation (i.e., power law fluids with yield stress). However, the yield stress in elongation is about 40% higher than in simple shear flow, which suggests that the original Herschel–Bulkley model need modification with the yield stress being a function of the second invariant of the deviatoric stress tensor. The present effort is the first to study capillary self-thinning of Herschel–Bulkley liquids, which are exemplified here by suspensions of carbon nanotubes.  相似文献   

7.
The interfacial slip of the immiscible isotactic polypropylene/polystyrene (PS) blends with different morphologies was studied. The morphologies were obtained by choosing different PS contents (7, 21, and 55 vol%) and different processing methods (multilayered co-extrusion and conventional blending). The interfacial slip was obviously found in the multilayered morphology and the co-continuous morphology, but did not occur in the sea-island morphology. Besides, it was observed that the slip velocity of the multilayered system was higher than that of the conventional blends with co-continuous morphology and could be promoted with the increase of layer numbers. However, the interfacial slip in the multilayered system would be suppressed by the layer deformation and breaking during the test, when the thickness of layers was thin enough. The effect of composition on the interfacial slip velocity was also discussed in the multilayered composites.  相似文献   

8.
Water-based nanofluids were prepared with multi walled carbon nanotubes(MWCNTs) of different lengths in concentrations of 0.1,0.25 and 0.5 vol%.To improve their dispersibility,pristine MWCNTs were functionalized and cut into small lengths by reflux in an oxidizing mixture of 3:1 sulfuric and nitric acids.The initial length of the carbon nanotubes(CNTs;10-15 μm) was reduced to 203,171 and 134 nm after1,2 and 4h of reflux,respectively.Surface modification and the reduced length of the CNTs,improved the stability of the nanofluids with no significant sedimentation observed after 80 days.Furthermore,the thermal conductivities of nanofluids prepared using refluxed CNTs,were higher than that of the pristine CNTs.The thermal conductivity also increased with the nanofluid temperature.The nanofluid prepared with 1 h refluxed CNTs had the highest thermal conductivity.The enhanced thermal conductivity and stability of the nanofluids was attributed to the decreased length of CNTs.  相似文献   

9.
The electrical conductivity of carbon nanotube buckypapers can be dramatically increased by incorporation of silver particles contained in a commercial silver paste.Two methods,co-dispersion during the production of buckypaper and surface coating on a preformed buckypaper,were used to prepare composite buckypapers.The two types of composite buckypapers exhibited very different electrical conductivity profiles.The composite buckypapers prepared by the surface coating method showed a distinct step transition in electrical conductivity at 3 vol%silver content,leading to a 15-fold improvement at 6%silver content.The composite buckypapers prepared by the co-dispersion method showed a gradual change in electrical conductivity with increasing silver particle content,resulting in a five-fold improvement at12%silver content.Surface and sectional morphologies of the two types of composite buckypapers were examined and related to their electrical conductivity profiles.  相似文献   

10.
碳纳米管作为导电相在机敏复合材料中广泛应用,但碳纳米管为团簇材料,在基体中很难均匀分散。本文考虑碳纳米管的非均匀分布特性,提出了计算碳纳米管复合材料电导率的数值方法。通过引入随机谐和函数,建立了碳纳米管体积分数的三维随机场模型。基于细观力学的有效介质理论、Mori-Tanaka方法和H-S界限理论,考虑碳纳米管之间的隧穿效应,发展了复合材料微小体积单元的电导率计算方法。在此基础上,构建了考虑碳纳米管非均匀分布的复合材料等效电导率三维有限元计算模型。数值分析结果与试验值能够很好吻合,表明这一方法可以准确计算碳纳米管复合材料的电导率。本文进一步分析了碳纳米管非均匀分布对复合材料电导率的影响。  相似文献   

11.
In this work liquid crystalline polymer (LCP) and thermoplastic (TP) blends with and without compatibilizer were studied with respect to their elongational flow behavior, under uniaxial extensional flow. This knowledge is important because in processes involving dominantly extensional deformations, like the case of the formation of the LCP fibrillation, transient extensional flow properties become more important than transient or steady-shear properties. In systems characterized by disperse phase morphologies (10 and 20 wt%) the LCP acts as a plasticizer, decreasing the viscosity of the system and increasing its durability with respect to that of the matrix. On the other hand, for a system in which a co-continuous morphology is present (40 wt% LCP) fibrils and droplets deformation occurs simultaneously, leading to a much higher strain hardening and durability. Moreover, the addition of compatibilizers to the blends gives rise to an increase of the strain hardening and to a decrease of the durability, which is in accordance with the mechanical properties, namely a higher Young’s modulus and lower elongation at break, in comparison with noncompatibilized systems.  相似文献   

12.
Observations are reported on polypropylene/polyethylene blends with various concentrations of components in uniaxial tensile tests with constant strain rates, relaxation tests, and creep tests at room temperature. A model is developed for the viscoelastic and viscoplastic responses of polymer blends at arbitrary three-dimensional deformation with small strains. Material constants in the constitutive equations are determined by fitting the experimental data. It is found that all adjustable parameters evolve with blend composition following an analog of the rule of mixture. Lifetime of blends under condition of creep rupture is evaluated by numerical simulation.  相似文献   

13.
The rheological properties in the transient state of PP/EPDM blends with carbon nanofillers had been studied. The carbon nanofillers were incorporated into molten EPDM in an internal mixer at 150 °C. The rheological variables were determined in rotational rheometry at constant temperature of 200 °C. The results suggest that the magnitude of the difference of the normal stress differences (N1-N2) of PP/EPDM blends through the time, with and without nanofillers, and has a transition cycle from positive to negative values and vice versa, at constant and at zero shear rate in previously sheared samples. At constant shear rate, the transition cycle is random; meanwhile, it is constant at zero shear rate. This behavior is attributed to the polymeric chain movement, considering that the sheared samples have two molecular reorder processes: an immediate mechanism and another one slower. The fastest reorder process is attributed to the polymeric chains entanglement forming non-stable and stressed molecular structures. In the other hand, the second process is referred to the molecular mobility that takes place inside the stressed entangled polymer, in such a way that its structure tends to molecular stability as the rest time increases.  相似文献   

14.
Free convection in hybrid nanomaterial-saturated permeable media is crucial in various engineering applications.The present study aims to investigate the free convection of an aqueous-based hybrid nanomaterial through a zone under the combined effect of the Lorentz force and radiation.The natural convection of the hybrid nanomaterial is modeled by implementing a control volume finite element method(CVFEM)-based code,whereas Darcy assumptions are used to model the porosity terms in the momentum buoyancy equation involving the average Nusselt number Nuave,flow streamlines,and isotherm profiles.A formula for estimating Nuave is proposed.The results show that the magnetic force retards the flow,and the fluid tends to attract the magnetic field source.Nuave is directly correlated with the Rayleigh number and radiation;however,it is indirectly dependent on the Hartmann number.Conduction is the dominant mode at larger Darcy and Hartmann numbers.  相似文献   

15.
The linear viscoelastic behavior of three well-entangled linear monodisperse polystyrene melts and their blends is investigated. The monodisperse melts are blended in a 1:1 weight ratio to obtain three polystyrene bidisperse blends for which the linear viscoelastic behavior is also measured. Special attention is paid to controlling sample size and solvent content, and checking for consistency in the high-frequency regime. We also attempt to estimate uncertainty quantitatively. The experimental results agree well with the discrete slip-link model, a robust mesoscopic theory that has been successful in predicting the rheology of flexible entangled polymer liquids and gels. Using recently developed analytic expressions for the relaxation modulus, predictions of the monodisperse samples are made. The parameters for the model are obtained from the low-frequency crossover of one experiment. Using this parameter set without adjustment, predictions over the fully accessible experimental frequency range are obtained for the monodisperse samples and their blends with very good agreement.  相似文献   

16.
A series of melt blended commercial linear and branched polyethylenes are used to explore the generality of blending laws. The measured relaxation modulus G(t), and zero shear viscosity 0 for each blend and blend fraction, have been compared with prediction for miscible blends, particularly using equations derived by Tsenoglou (1987). Plus or minus deviation between theory and measurement is dependent on the relative molecular weights of the blend components. We have found empirically that a generalised form of the blending law for G(t) and for 0, with a floating index C, provides an improved prediction of the blend fraction data. In particular the function defining C is non-symmetrical, from which we infer the significance of branching as well as molecular weight. The optimum value of the index differs for each of our blends, in the range 1.25 to 4, the variability being accounted for by the different degrees to which branched and linear polymers relax co-operatively in the melt. Blends of two near linear polymers do not fit the floating index prediction and conform more closely, though not precisely, to the original Tsenoglou rule.  相似文献   

17.
 We investigated the thermo- rheological behavior of high glass transition, high molecular weight and small dynamic asymmetry blends of poly(styrene-co-maleic anhydride) (SMA) and poly (methyl methacrylate) (PMMA) with varying amounts of maleic anhydride (MA) content, namely 8 wt%, 14 wt% and 32 wt%, in the SMA component. The phase separation (binodal) temperature of each blend was determined rheologically using a combination of dynamic frequency and temperature sweeps in parallel plate geometry; it was marked by a change in slope of the elastic modulus and the occurrence of a peak in tan δ in temperature sweeps. Failure of the time-temperature superposition principle and observation of two peaks in the Cole-Cole plots corroborated these findings. The blends displayed lower critical solution temperature (LCST) behavior with the critical temperatures exhibiting a non-monotonic dependence on the MA content. From rheological and thermal measurements it was concluded that SMA/PMMA blends containing 14% MA were more miscible than those containing 8% or 32% MA, a finding attributed to the compositional dependence of the interplay between SMA-SMA and SMA-PMMA interactions in the different samples. MA also influenced the dynamic asymmetry and pretransitional concentration fluctuations. The phase diagrams corresponding to each blend were modeled using a two-parameter temperature dependent interaction parameter, based on the concept of generalized Gibbs free energy of mixing. The fitted values of interaction parameter were in good agreement with values calculated explicitly using the Flory-Huggins theory. Received: 16 February 2001 Accepted: 11 July 2001  相似文献   

18.
19.
Yuanqiao Rao   《Particuology》2010,8(6):549-555
There is no doubt about the potential technological significance of nanofluids. The promising application areas have been identified as effective heat transfer fluids, contrast agents in magnetic resonance imaging, magnetohyperthermia treatment, precursors to high performance nanocomposites and ordered nanostructures. However, commercial applications are rare, in part due to the limited understanding of the nanofluid fundamentals such as colloid stability, phase diagrams and rheology. This paper intends to provide a brief overview of the scientific disciplines that are important to nanofluids, and the interconnection among different disciplines in order to gain a perspective on the future development of this intriguing area.  相似文献   

20.
CdS/PS and ZnS/PS nanocomposites have been prepared by solution casting method with different wt% of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles and characterized through X-ray diffraction and transmission electron microscope measurements. The effective thermal conductivity of polymer nanocomposites has been measured by transient plane source method over the temperature range from room to 150 °C. The experimental results showed that the thermal conductivity has been found to increase up to 4 wt% of CdS/ZnS nanoparticles and then decrease for 6 and 8 wt% of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号