首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
Amides can be hydrogenated to amines using a catalyst prepared in situ from [Ru(acac)(3)] and 1,1,1-tris(diphenylphosphinomethyl)ethane; water is required to stabilize the catalyst and primary amines can only be formed (selectivity up to 85%) if ammonia is also present.  相似文献   

2.
Ohta H  Yuyama Y  Uozumi Y  Yamada YM 《Organic letters》2011,13(15):3892-3895
An in-water dehydrative alkylation with a novel heterobimetallic polymeric catalyst is described. Thus, a boron-iridium heterobimetallic polymeric catalyst was prepared by ionic convolution of a poly(catechol borate) and an iridium complex. The alkylation of ammonia and amines with alcohols, alkylating agents, was performed with 1 mol % Ir of the heterogeneous catalyst in water without the use of organic solvents under aerobic conditions to give the corresponding alkylated amines.  相似文献   

3.
李贵贤 《分子催化》2012,26(2):116-120
采用浸渍沉淀法制备Ni/HY催化剂,用BET、XRD、TEM、TPR等方法对其进行表征,并将其应用于硝基化合物液相加氢合成苯胺类化合物反应中.结果表明,Ni/HY催化剂具有较高的催化活性,在温和的反应条件下,反应0.5 h后,硝基化合物的转化率和苯胺类化合物的选择性均高达99.0%以上.该催化剂能储存于150℃以下的空气气氛中,活性组分分散度高,且具有良好的磁分离性能.  相似文献   

4.
Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(III) oxide-MgO catalyst. The catalyst exhibited high activity and stability for the reduction of sulphur-containing aromatic nitro compounds. The yields of sulphur-containing aromatic amines were up to 91-99 % at 355 K after reduction for 1-4 h over this catalyst.  相似文献   

5.
A highly active organocatalyst has been shown to affect the asymmetric reductive amination of ketones producing both aromatic and aliphatic amines. At 1 mol% catalyst loading, a series of structurally diverse chiral amines were quickly and economically prepared with good enantioselectivity and generally useful yield. The efficient synthesis of the calcimimetic (+)-NPS R-568 (67%, 89% ee) demonstrated the synthetic applicability of this methodology.  相似文献   

6.
The development of the first highly active enantioselective catalyst for the aza-Claisen rearrangement of Z-configured allylic trifluoroacetimidates generating valuable almost enantiopure protected allylic amines is described. Usually Z-configured allylic imidates react significantly slower than their E-configured counterparts, but in the present study the opposite effect was observed. Z-Configured olefins have the principal practical advantage that a geometrically pure C=C double bond can be readily obtained, for example, by semihydrogenations of alkynes. Our catalyst, a C(2)-symmetric planar chiral bispalladacycle complex, is rapidly prepared from ferrocene in four simple steps. Key step of this protocol is an unprecedented highly diastereoselective biscyclopalladation providing dimeric macrocyclic complexes of fascinating structure. In the present study as little as 0.1 mol % of catalyst precursor were sufficient for most of the alkyl substituted substrates to give in general almost quantitative yields. NMR investigations revealed a monomeric structure for the active catalyst species. The bispalladacycle can also be used for the formation of almost enantiomerically pure allylic amines (ee > or =96 %) substituted with important functional groups such as ester, ketone, ether, silyl ether, acetal or protected amino moieties providing high-added-value allylic amine building blocks in excellent yield (> or =94 %). The preparative advantages should render this methodology highly appealing as a practical and valuable tool for the formation of allylic amines in target oriented synthesis.  相似文献   

7.
《中国化学》2017,35(9):1371-1377
Heterogeneous iridium catalysts were prepared and applied for the reductive amination of aldehydes and ketones with nitroaromatics and amines using H2 . The iridium catalysts were prepared by pyrolysis of ionic liquid 1‐methyl‐3‐cyanomethylimidazoulium chloride ([MCNI ]Cl) with iridium chloride (IrCl3 ) in activated carbons. Iridium particles were well dispersed and stable in the N‐doped carbon materials from [MCNI ]Cl with activated carbon. The Ir@NC (600‐2h) catalyst was found to be highly active and selective for the reductive amination of aldehydes and ketones using H2 and a variety of nitrobenzenes and amines were selectively converted into the corresponding secondary and tertiary amines. The Ir@NC (600‐2h) catalyst can be reusable several times without evident deactivation.  相似文献   

8.
Palladium catalyzed N-alkylation of amines with alcohols   总被引:1,自引:0,他引:1  
An iron oxide immobilized palladium catalyst was prepared for the N-alkylation of amines with alcohols under base and organic ligand free conditions. Applying the optimized reaction conditions, the coupling reactions of amines and alcohols with various structures could be realized with up to 99% isolated yields. The catalysts were studied by XRD, BET, and XPS and the mechanism was studied by DFT calculations.  相似文献   

9.
Pyrroles may be prepared by condensation of alkyl and aryl amines and 1,4-diketones (Paal-Knorr reaction) under potassium exchanged layered Zirconium phosphate and zirconium sulfophenyl phosphonate catalyst in solvent free conditions.  相似文献   

10.
A mild, effective, and selective procedure is reported for the mono N-benzylation and N,N-dibenzylation of primary amines as well as mono N-benzylation of secondary amines using silica-supported copper(I) oxide in water. The silica-supported Cu2O was generated in situ by the reaction of Fehling solution and glucose at 100 ℃ onto activated silica. The catalyst was filtered, washed with water, and oven-dried, and was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and atomic absorption spectroscopy. The prepared Cu2O-SiO2 was found to be thermally stable up to 325 ℃. The copper was uniformly distributed onto the surface of the silica, and the mean particle diameter was 7 nm. The catalyst served as a selective heterogenous catalyst for the N-benzylation of primary and secondary amines. The catalyst is recyclable and was used effectively upto fifth run without a significant loss of catalytic activity. Various reaction solvents including water, acetonitrile, and toluene were screened for N-benzylation of amines, and the success of the aqueous system highlights the low environmental impact of the procedure.  相似文献   

11.
(E)- or (Z)-perfluorinated β-enaminoesters were prepared by direct addition of primary or secondary amines to ethyl perfluoroalkynoates without any catalyst.  相似文献   

12.
Chiral nonracemic N-(diphenylphosphinoyl)-protected propargylic amines have been prepared by addition of terminal alkynes to N-(diphenylphosphinoyl)aldimines in the presence of dimethylzinc and 3,3′-dibromo-BINOL as catalyst. The reaction works with a variety of aromatic and heteroaromatic aldimines and with different alkynes, providing the expected products in generally good yields and enantiomeric excesses (up to 96%).  相似文献   

13.
Versatile syntheses of secondary and tertiary amines by highly efficient direct N‐alkylation of primary and secondary amines with alcohols or by deaminative self‐coupling of primary amines have been successfully realized by means of a heterogeneous bimetallic Pt–Sn/γ‐Al2O3 catalyst (0.5 wt % Pt, Pt/Sn molar ratio=1:3) through a borrowing‐hydrogen strategy. In the presence of oxygen, imines were also efficiently prepared from the tandem reactions of amines with alcohols or between two primary amines. The proposed mechanism reveals that an alcohol or amine substrate is initially dehydrogenated to an aldehyde/ketone or NH‐imine with concomitant formation of a [PtSn] hydride. Condensation of the aldehyde/ketone species or deamination of the NH‐imine intermediate with another molecule of amine forms an N‐substituted imine which is then reduced to a new amine product by the in‐situ generated [PtSn] hydride under a nitrogen atmosphere or remains unchanged as the final product under an oxygen atmosphere. The Pt–Sn/γ‐Al2O3 catalyst can be easily recycled without Pt metal leaching and has exhibited very high catalytic activity toward a wide range of amine and alcohol substrates, which suggests potential for application in the direct production of secondary and tertiary amines and N‐substituted imines.  相似文献   

14.
开发了一种温和高效的以甲醇为氢源,以Ru-Fe双金属催化剂催化的硝基芳烃连续化转移加氢方法。采用浸渍法制备Ru-Fe双金属催化剂,通过电感耦合等离子体-质谱(ICP-MS)、透射电子显微镜(TEM)、X射线衍射(XRD)、氢气程序升温还原(H2-TPR)对催化剂进行表征。结果表明催化剂具有较小的粒径和较好的分散性。在Ru-Fe双金属催化剂上,成功实现了硝基芳烃与甲醇在无外加氢源条件下的连续化转移加氢合成芳胺。通过对反应条件的调控,成功得到了一系列产率较高的胺类化合物。特别地,该方法对不饱和基团(醛基、羰基或炔基)取代的硝基芳烃的加氢表现出优异的选择性和转化率。  相似文献   

15.
Dihydropyridones were prepared by microwave-assisted reaction between curcumin and primary amines or their acetates in the presence of Montmorillonite (K-10) as a catalyst. The reaction was complete within a few minutes and the yield depends on the amine used.  相似文献   

16.
A triruthenium cluster, (mu3,eta2,eta3,eta5-acenaphthylene)Ru3(CO)7 (1) catalyzes the reaction of secondary amides with hydrosilanes, yielding a mixture of secondary amines, tertiary amines, and silyl enamines. Production of secondary amines with complete selectivity is achieved by the use of higher concentration of the catalyst (3 mol %) and the use of bifunctional hydrosilanes such as 1,1,3,3-tetramethyldisiloxane. Acidic workup of the reaction mixture affords the corresponding ammonium salts, which can be treated with a base, providing a facile method for isolation of secondary amines with high purity. In contrast, tertiary amines are formed with high selectivity by using lower concentration of the catalyst (1 mol %) and polymeric hydrosiloxanes (PMHS) as reducing agent. Reduction with PMHS encapsulates the ruthenium catalyst and organic byproducts to the insoluble silicone resin. The two reaction manifolds are applicable to various secondary amides and are practical in that the procedures provide the desired secondary or tertiary amine as a single product. The product contaminated with only minimal amounts of ruthenium and silicon residues. On the basis of the products and observed side products as well as NMR studies a mechanistic scenario for the reaction is also described.  相似文献   

17.
In this research, a new series of thiazoline-iridium (III) complexes ( 4 – 7 ) derived from cysteine were prepared and fully characterized by conventional methods. The molecular structure of complex 5 was also determined by single-crystal X-ray diffraction. These complexes were evaluated as catalysts for hydrogen-borrowing reactions of amines with alcohols. In particular, complex 5 showed the best activity as catalyst. Various amines have been alkylated with alcohols affording moderate to good yield (33–99%). Moreover, the immobilized nanomaterials ( M 1,2 ) were fabricated by sonication process from the best catalyst 5 with the multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO), respectively, and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, and inductively coupled plasma-mass spectrometry (ICP-MS). The M 1,2 nanomaterials were also tested as catalysts in model catalytic reaction for N-alkylation. The M 1 nanomaterial showed significantly higher activity than the M 2 nanomaterial. The M 1 catalyst was recovered by filtration and reused for four catalytic cycles with high conversion (99%, 97%, 96%, and 86%).  相似文献   

18.
以2,3-二氨基萘为配体,K2PdCl4为金属前驱体,经重氮化制备出一种Pd(0)纳米催化剂(Pd-NPs),其结构经TEM、XPS、XRD、EA和ICP-OES表征,并将催化剂应用于芳香醛类化合物直接还原胺化反应中.在常温常压下以苯甲醛为底物,水为溶剂,H2为还原剂,探究了胺源、溶剂pH、催化剂用量、反应时间等变量对...  相似文献   

19.
A chiral rhodium complex with (+)-diop as ligand is used as a catalyst in asymmetric synthesis leading to amines and N-acyl derivatives. Two kinds of reactions are investigated: asymetric hydrogenation of enamides and hydrosilylation of imines. Good optical yields are observed in the synthesis of N-acetyl -phnenylethylamine (e.e. 45%) and N-acetyl -phenylpropylamine (e.e. 83%). A strong solvent effect is observed, which can reverse the absolute configuration of tN-acetyl--phenylethylamine obtained by reduction of its enamide precursor. N-Benzyl--phenyl ethylamine is prepared by hydrosilylation with 65% optical purity. An asymmetric synthesis of 1,2,3,4-tetrahydropapaverine (e.e 38%) and related compounds is described.  相似文献   

20.
A bimetallic catalyst (Ni/Cu‐MCM‐41) is prepared via co‐condensation method. The latter is characterized by Fourier transform infrared (FT‐IR), X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), diffuse reflectance spectroscopy (DRS), and nitrogen adsorption–desorption analysis. Catalytic performance of Ni/Cu‐MCM‐41 is probed in N‐alkylation of amines with alcohols through a hydrogen autotransfer process. Noteworthy, this catalytic system appears very efficient for synthesis of a range of secondary and tertiary amines in good to excellent isolated yields. Moreover, the catalyst is successfully recovered and reused four times without notable decrease in its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号