首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
We have theoretically and experimentally investigated the superradiance from a bunch of electrons rotating in a homogeneous magnetic field. A RADAN-303B modulator equipped with a subnanosecond pulse slicer has been used to generate high current subnanosecond electron bunches (250 kV, 0.1-1 kA, 0.3-0.5 ns). Transverse momentum was imparted to the electrons by a kicker. It is shown that for the experimental observation of cyclotron superradiance from high current electron bunches the optimum conditions are the conditions of group synchronism, when the translational velocity of the bunch coincides with the group velocity of the radiation propagating in the waveguide. In the 35 GHz range microwave pulses with record short duration, down to 0.4 ns, with a peak power level up to 200 kW, have been obtained  相似文献   

2.
A theory is presented of cyclotron superradiance from an electron bunch rotating in a uniform magnetic field and drifting at a velocity close to the group velocity of a wave propagating in a waveguide. It is shown that, in a comoving frame of reference, the bunch emits radiation at a frequency close to the cutoff frequency of the waveguide. Superradiance implies the azimuthal self-bunching of electrons, which is accompanied by coherent emission of the stored rotational energy in a short electromagnetic pulse. Linear and nonlinear stages of the process are analyzed. The growth rate of the superradiance instability is determined. It is shown that the maximum growth rate is attained under group synchronism conditions. The peak power and the characteristic duration of the cyclotron superradiance pulse are determined by numerical simulation. The characteristic features of the superradiance pulses are described in the comoving and laboratory frames. The results of theoretical analysis are compared with experimental data.  相似文献   

3.
Experimentally observed Cherenkov superradiance produced by a subnanosecond electron bunch traveling through a partially filled waveguide is reported. 400-ps microwave pulses with a peak power of 2 MW are obtained. The experimental results are in good agreement with the theoretical analysis and numerical simulations performed with the help of the PIC code KARAT.  相似文献   

4.
Cherenkov superradiance observed when an electron bunch rectilinearly moves through a slow-wave periodic system is studied theoretically and experimentally. The simulation based on averaged equations and the direct numerical simulation using the PIC-code KARAT show that the peak power of the microwave pulses varies as the total number of the particles in a bunch squared. This finding is confirmed experimentally. Ultrashort (300 ps wide) high-power (up to 140 MW) pulses are generated at a frequency of 39 GHz. As an electron source, the high-current subnanosecond RADAN-303 accelerator is used. It injects 0.5-to 1.5-ns-wide electron bunches of current up to 2 kA and energy 200–300 keV. The simulation suggests that the power of the electromagnetic pulses can be increased further (up to 300 or 400 MW) by optimizing the accelerating voltage pulse shape.  相似文献   

5.
We propose a method for increasing the peak power of a superradiance pulse by varying the electron energy along an electron bunch. A one-dimensional time-dependent model describing the evolution of an electromagnetic pulse as well as direct numerical simulations based on the KARAT code show that the power of generated pulses becomes several times greater if the particle energy increases linearly along the bunch. A similar method can be applied to increase the peak power in the case of amplification of a short electromagnetic pulse (and a superradiance pulse generated by an external source) propagated along a quasi-continuous electron beam with a certain particle-energy profile.  相似文献   

6.
Ponderomotive effects that arise when an intense plane pumping wave acts on low-concentration electron and plasma bunches are theoretically studied within the framework of a one-dimensional model. Using the Lagrange variables, an electron (plasma) bunch under the action of a pumping field can be represented as a gas comprising macroparticles with ponderomotive and Coulomb interactions. The ponderomotive force at small interparticle distances is attractive, that is, directed oppositely to the Coulomb force; it cannot, however, completely balance the latter. The constructed model is used to study superradiance, which arises when an intense pumping wave acts on an extended electron bunch. Radiation is then scattered in the form of narrow pulses whose amplitude is proportional to the total number of particles in the bunch. In addition, we describe acceleration of a neutral plasma layer, narrow on the wavelength scale, in the field of an intense wave and radiation field-induced partial contraction of an electron bunch with an incompletely compensated charge.  相似文献   

7.
The self-induced transparency effects that emerge when short (on the relaxation time scale) light pulses propagate in a two-level noninverted medium are well known in optics. The interaction of microwave pulses with an initially rectilinear electron beam under cyclotron resonance conditions can serve as a classical analog of the described effects. In this case, at a certain intensity of the input signal, the cyclotron absorption is replaced by self-induced transparency when the input pulse propagates almost without any change of its profile, forming a soliton whose amplitude and duration are rigidly related to its velocity. In a certain domain of parameters, this process is accompanied by significant two- or threefold compression of the initial pulse, which is of practical interest for the generation of multigigawatt picosecond microwave pulses. Since the soliton velocity lies between the unperturbed group velocity of the radiation and the translational velocity of the particles, another nontrivial effect in the case of interaction with a counterpropagating electron beam is the possibility of a significant deceleration or full stopping of the electromagnetic pulse.  相似文献   

8.
Intense (several hundreds of kilowatts) subnanosecond coherent microwave radiation — cyclotron superradiance of an electron swarm moving in a uniform magnetic field — was recorded. The maximum power of the radiation was observed under group synchronization conditions, when the translational velocity of the swarm is equal to the group velocity of the waves in the waveguide channel. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 5, 322–325 (10 March 1996)  相似文献   

9.
运用超辐射机理,通过粒子模拟设计了X波段超辐射相对论返波管,并在小型Tesla脉冲源平台上开展了实验研究。通过空间功率积分和直接对辐射微波时域波形的分析得到实验结果:在束压350 kV、束流4.8 kA、脉宽3.1 ns、引导磁场2.2 T条件下,产生的微波辐射功率1.4 GW,中心频率9.36 GHz,脉宽500~700 ps,辐射模式为TE11,能在重复频率100 Hz下稳定运行。功率转换效率超过80%。实验结果与粒子模拟结果比较吻合,成功实现了在短脉冲条件下产生重复频率、亚纳秒脉宽、GW级微波辐射。  相似文献   

10.
The process of Thomson scattering of an ultra-intense laser pulse by a relativistic electron bunch has been proposed as a way to obtain a bright source of short, tunable and quasi-monochromatic X-ray pulses. The real applicability of such a method depends crucially on the electron-beam quality, the angular and energetic distributions playing a relevant role. In this paper we present the computation of the Thomson-scattered radiation generated by a plane-wave, linearly polarized and flat-top laser pulse, incident on a counterpropagating electron bunch having a sizable angular divergence and a generic energy distribution. Both linear and nonlinear Thomson-scattering regimes are considered and the impact of the rising front of the pulse on the scattered-radiation distribution has been taken into account. Simplified relations valid for long laser pulses and small values of both scattering angle and bunch divergence are also reported. Finally, we apply the results to the cases of backscattering with electron bunches typically produced with both standard radio-frequency-based accelerators and laser–plasma accelerators.  相似文献   

11.
A theory of free-electron lasers fed a sequence of short electron pulses is developed. It is assumed that the group velocity of the electromagnetic pulse that develops in the cavity is the same as the translational velocity of the particles, and the repetition period of the electron pulses equals the transit time of the electromagnetic radiation in the cavity. Under these conditions of group synchronism, the principal factors governing the feasibility of establishing a stationary pulsed lasing regime are found to be the dispersive spread of the electromagnetic pulse and the channeling properties of an electron bunch. The conditions for self-excitation are found, and the characteristics of the stationary lasing regimes are determined assuming that the cavity has a high Q and using a parabolic equation for the evolution of the electromagnetic pulse shape. Zh. Tekh. Fiz. 69, 78–83 (February 1999)  相似文献   

12.
An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses. In this paper, we use OOPIC the fully self-consistent, twodimensional, particle-in-cell code to make a parameter study to determine the bunches that can be obtained through collisions of two collinear laser pulses in uniform plasma. A series of simulations show that one can obtain a short (<10fs) bunch with its charge of about 15pC, and energy spread of about 15%. We also discussed the variation of the transverse spot size of the electron bunch and found the bunch would undergo the betatron oscillations.  相似文献   

13.
An effect of the nonlinear compression of ultrashort microwave pulses has been observed in the process of the amplification of quasistationary electron beams. The Cherenkov mechanism of the interaction of a rectangular electron beam with a decelerated wave in a waveguide partially filled with an insulator is used. The experiment has been conducted on a setup consisting of two synchronized RADAN high-current accelerators. The first accelerator supplied a generator of 37-GHz superradiance pulses with a duration of about 300 ps. The second accelerator with a beam current of up to 1.2 kA and an electron energy of about 300 keV was used in an amplifying section. The theoretical analysis shows that the amplification of the electromagnetic pulses (at least by a factor of 4 in the power) is accompanied by a strong decrease in their duration (down to 100 ps).  相似文献   

14.
《Current Applied Physics》2010,10(2):475-478
Investigated is the optimal energy-phase correlation for superradiance of an intense electron bunch in an undulator field. It is noted that the superradiant emission saturates due to the bunch self-field at an energy proportional to the total charge in the bunch.  相似文献   

15.
The effect of the nonstationary condensation of electron-hole pairs in GaAs/AlGaAs p-i-n heterostructures at room temperature under the conditions of generation of superradiance pulses was demonstrated in an explicit form. It was found that a dramatic decrease in spontaneous emission from the entire conduction band and a rapid electron transition to the very bottom of the band occurred at the earliest stages of the development of a superradiance pulse. The condensation of electrons at the band bottom resulted in the formation of a nonequilibrium coherent cooperative state, the recombination of which was observed previously as high-power femtosecond superradiance pulses.  相似文献   

16.
Problems associated with the formation of coherent oscillations of an ensemble of classical oscillators and their superradiance instability are considered. The dispersion properties of an electron bunch and the conditions for the generation of nonequilibrium radiation are determined in the quasi-steady anharmonic oscillator approximation.  相似文献   

17.
利用康普顿散射实现太赫兹皮秒脉冲的分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 研究了利用微波与电子束团的康普顿散射实现太赫兹的方法、光子产额和辐射功率。推导出了单个电子产生的太赫兹的光子产额和辐射功率表达式,也推导出了电子束团产生的太赫兹的光子总产额和辐射总功率表达式。结果发现:利用微波与电子束团发生康普顿垂直散射,可以产生太赫兹皮秒脉冲;单个电子产生的太赫兹光子产额与微波功率、微波波长成正比,与微波束截面积成反比;单个电子产生的太赫兹辐射功率与微波功率、电子Lorentz因子的平方成正比,与微波束截面积成反比;电子束团产生的太赫兹光子总产额与微波功率的平方、微波波长的平方成正比,与微波束截面积的平方成反比;电子束团产生的太赫兹辐射总功率与微波功率的平方、微波波长以及电子Lorentz因子的平方成正比,与微波束截面积的平方成反比。  相似文献   

18.
We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.  相似文献   

19.
One of the promising methods for generation of ultrashort electromagnetic pulses (with duration of about ten periods of high-frequency oscillations) is radiation from spatially localized electron ensembles (bunches), which can be considered a classical analog of Dicke superradiance known in quantum electronics. In classical electronics, superradiance can be related to various mechanisms of stimulated radiation. Until now, cyclotron, undulator, and ?erenkov (in the case of interaction with both copropagating and counterpropagating waves) superradiance of electron bunches as well as superradiance during stimulated scattering of a pump wave have been studied theoretically and experimentally. As a result of these studies based on high-current RADAN and SINUS accelerators and their modifications, a new class of oscillators producing pulsed electromagnetic radiation has been created. They have such unique characteristics as pulses of high peak power (up to 1 GW and 3 GW in the millimeter-and centimeter-wave ranges, respectively) and ultrashort duration (from 300 ps to 1 ns, respectively). In this case, regimes with a peak radiation power exceeding the electron-beam power are experimentally realized. Regimes with high (kilohertz) pulse repetition rate and high average power (up to 2.5 kW) are obtained.  相似文献   

20.
Experimental results of the observation of coherent stimulated radiation from subnanosecond electron bunches moving through a periodic waveguide and interacting with a backward propagating wave are presented. The subnanosecond microwave pulses in Ka and W bands were generated with repetition frequencies of up to 25 Hz. The mechanism of microwave pulse generation was associated with self-bunching, and the mutual influence of different parts of the electron pulse due to slippage of the wave with respect to the electrons; this can be interpreted as superradiance. The illumination of a panel of neon bulbs resulted in a finely structured pattern corresponding to the excitation of the TM01 mode. Observation of rf breakdown of ambient air, as well as direct measurements by hot-carrier germanium detectors, leads to an estimate of the absolute peak power as high as 60 MW for the 300-ps pulses at 38 GHz. These results are compared with numerical simulations. The initial observation of 75-GHz, 10-15-MW radiation pulses with a duration of less than 150 ps is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号