首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andreas Klust 《Surface science》2006,600(23):5025-5040
Temperature programmed reaction spectroscopy (TPRS), X-ray photoelectron spectroscopy (XPS), and reflection absorption infrared spectroscopy (RAIRS) were used to study the partial oxidation of styrene on Ag(1 1 1). Styrene oxide, benzene, and benzoic acid were identified as partially oxidized reaction products. XPS and RAIRS provide evidence for the formation of a styrene-derived surface oxametallacycle that either forms styrene oxide or is further oxidized in a branching reaction to form benzoate, which is the intermediate responsible for the formation of both benzene and benzoic acid. The strong dependence of the product distribution on oxygen coverage suggests that O monomers adsorbed on Ag(1 1 1) provide a higher selectivity for partial oxidation than oxygen from the Ag(1 1 1)-p(4 × 4)-O reconstruction.  相似文献   

2.
The adsorption of germanium on Ag(1 1 0) has been investigated by scanning tunnelling microscopy (STM), as well as surface X-ray diffraction (SXRD). At 0.5 germanium monolayer (ML) coverage, Low Energy Electron Diffraction (LEED) patterns reveals a sharp c(4 × 2) superstructure. Based on STM images and SXRD measurements, we present an atomic model of the surface structure with Ge atoms forming tetramer nano-clusters perfectly assembled in a two-dimensional array over the silver top layer. The adsorption of the germanium atoms induces a weak perturbation of the Ag surface. Upon comparison with results obtained on the (1 1 1) and (1 0 0) faces, we stress the role played by the relative interactions between silver and germanium on the observed surface structures.  相似文献   

3.
Ling Zhou  Robert J. Madix 《Surface science》2009,603(10-12):1751-1755
In contrast to the formation of styrene oxide on Ag(1 1 1), phenylacetaldehyde and phenylketene dominate the partial oxidation of styrene on Ag(1 1 0), even though the reactions follow the same mechanism on both surfaces. The origin of this difference is that on Ag(1 1 0) the activation energy for transformation of the oxametallacycle to the combustion intermediate is much lower than on the (1 1 1) surface, so that ring-closure of the oxametallacycle to form styrene oxide is short circuited. Also the combustion intermediate appears more stable on Ag(1 1 0) than on Ag(1 1 1).  相似文献   

4.
Growth of Ag islands under ultrahigh vacuum condition on air-exposed Si(0 0 1)-(2 × 1) surfaces has been investigated by in-situ reflection high energy electron diffraction (RHEED). A thin oxide is formed on Si via exposure of the clean Si(0 0 1)-(2 × 1) surface to air. Deposition of Ag on this oxidized surface was carried out at different substrate temperatures. Deposition at room temperature leads to the growth of randomly oriented Ag islands while well-oriented Ag islands, with (0 0 1)Ag||(0 0 1)Si, [1 1 0]Ag||[1 1 0]Si, have been found to grow at substrate temperatures of ≥350 °C in spite of the presence of the oxide layer between Ag islands and Si. The RHEED patterns show similarities with the case of Ag deposition on H-passivated Si(0 0 1) surfaces.  相似文献   

5.
The oxidation behavior of Ag(1 1 1) was studied by means of in situ surface X-ray diffraction at atmospheric oxygen pressure. Exposure to 1 bar oxygen at 773 K reveals a competing growth of three different oxygen-induced structures on Ag(1 1 1), namely the well-known p(4 × 4) reconstruction, a surface oxide in a p(7 × 7) coincidence structure and the bulk oxide Ag2O in orientation. The latter two exhibit the same honeycomb on hexagon arrangement of the Ag sublattice with respect to the Ag(1 1 1) surface. An inverted stacking of Ag planes in the bulk oxide islands is observed as compared to the Ag(1 1 1) substrate, which sheds new light on the Ag2O formation process. Finally, we present a structural model of the p(7 × 7) reconstruction, based on a three-layer O-Ag-O slab of Ag2O(1 1 1).  相似文献   

6.
Surface chemistry of nitrobenzene on Si(1 0 0)-2 × 1 has been investigated using multiple internal reflection Fourier-transform infrared spectroscopy (MIR-FTIR), Auger electron spectroscopy (AES) and thermal desorption mass spectrometry. Molecular adsorption of nitrobenzene at submonolayer coverages is dominating at cryogenic temperatures (100 K). As the surface temperature is increased to 160 K, chemical reaction involving nitro group occurs, while the phenyl entity remains intact. Thus, a barrier of approximately 40.8 kJ/mol is established for the interaction of the nitro group of nitrobenzene with the Si(1 0 0)-2 × 1 surface. Further annealing of the silicon surface leads to the decomposition of nitrobenzene. The concentration of nitrogen and oxygen remains constant on a surface within the temperature interval studied here. AES studies also suggest that the majority of carbon-containing products remain bound to the surface at temperatures as high as 1000 K. The only chemical reaction leading to the release of the gaseous products is benzene formation around 670 K. The amount of benzene accounts only for a few percent of the surface species, while the rest of the phenyl groups connected to the silicon surface via a nitrogen linker remain stable even at elevated temperatures, opening an opportunity for stable surface coatings.  相似文献   

7.
A low energy electron diffraction (LEED) investigation of the structure of the surface of an FeO(0 0 1) thin film grown on Ag(0 0 1) is presented. The results show that this surface has an almost bulk termination structure with a very small rumple on the first layer, which agrees with the structure found in other studies carried out on the (0 0 1) surface of oxides that have rock-salt structure. Evidences that may support a linear behaviour of the topmost layer rumple with the oxide lattice constant are also discussed.  相似文献   

8.
The adsorption of fluorescein on the Ag(1 1 0) surface has been investigated by the first-principles pseudopotential method. Various adsorption geometries have been calculated and the energetically most favorable structure of fluorescein/Ag(1 1 0) was identified. The fluorescein molecule, in most favorable structure, is on hollow site, and the adsorption energy is 2.34 eV. Here the adsorption sites refer to the positions at the first layer of the substrate where the middle carbon atom of the fluorescein molecule is located. The bonding strength of the fluorescein molecule to the Ag substrate is site selective, being determined by electron transfer to the oxygen atoms of the molecule and local electrostatic attraction between the oxygen atoms and the silver atoms.  相似文献   

9.
Adsorption of methanol on clean Pd(1 1 0) and on an alloyed Ag/Pd(1 1 0) surface has been studied by high-resolution photoelectron spectroscopy. On Pd(1 1 0) two different chemisorbed methanol species were observed for temperatures up to 200 K, with the one at lower binding energy remaining at low coverage. These species were attributed to methanol adsorbed in two different adsorption sites on the Pd(1 1 0) surface. As is well established for this system, heating to 250 K resulted in decomposition of methanol into CO. The adsorption and decomposition behaviour of methanol on the Ag/Pd(1 1 0) surface alloy formed by depositing Ag on Pd(1 1 0) at elevated temperature was similar to that of the pure Pd(1 1 0) surface. This suggests that the amount of Ag present in the Pd(1 1 0) surface in this study does not affect the decomposition behaviour of methanol as compared to pure Pd(1 1 0). Complementary density functional theory calculations also show little influence of Ag on the binding of methanol to Pd. These calculations predict an on-top adsorption site for low methanol coverages.  相似文献   

10.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

11.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

12.
Temperature-programmed reaction/desorption, X-ray photoelectron spectroscopy, and reflection-absorption infrared spectroscopy have been employed to investigate the reactions of ICH2CH2OH on Cu(1 0 0) under ultrahigh-vacuum conditions. ICH2CH2OH can dissociate on Cu(1 0 0) at 100 K, forming a -CH2CH2OH surface intermediate. Density functional theory calculations predict that the -CH2CH2OH is most probably adsorbed on atop site. -CH2CH2OH on Cu(1 0 0) further decomposes to yield C2H4 below 270 K. No evidence shows the formation of -CH2CH2O- intermediate in the reactions of ICH2CH2OH on Cu(1 0 0) in contrast to the decomposition of BrCH2CH2OH on Cu(1 0 0) and ICH2CH2OH on Ag(1 1 1) and Ag(1 1 0), exhibiting the effects of carbon-halogen bonds and metal surfaces.  相似文献   

13.
The adsorption of Pd, Ag and Au atoms on a porous silica film on Mo(1 1 2) is investigated by scanning tunneling microscopy and density functional theory. While Pd atoms are able to penetrate the holes in the silica top-layer with virtually no barrier, Ag atoms experience an intermediate barrier value and Au atoms are completely unable to pass the oxide surface. The penetration probability does not correlate with the effective size of the atoms, but depends on their electronic structure. Whereas Pd with an unoccupied valence s-orbital has a low penetration barrier, Ag and Au atoms with occupied s-states experience a substantial repulsion with the filled oxide states, leading to a higher barrier for penetration. In the case of Ag, the barrier height can be temporally lowered by promoting the Ag 5s-electron into the support. The Mo-supported silica film can thus be considered as a primitive form of an atomic sieve whose selectivity is controlled by the electronic structure of the adatoms.  相似文献   

14.
The adsorption and reaction of nitrogen dioxide on the Ag(1 1 1)-p(4 × 4)-O surface has been investigated with RAIRS, TPRS and STM. At 300 K NO2 initially reacts with the oxygen overlayer to form nitrate in p(3 × 3) and p(4 × 4) structures, which convert to a new p(3 × 3) at saturation coverage. Surface pitting during nitrate adsorption is suggestive of the incorporation of silver atoms into the NO3 structure. With heating NO3 decomposes into NO2 and O at 396 K and 497 K, and oxygen desorbs at 578 K.  相似文献   

15.
Density functional theory calculations are performed to investigate the C diffusion through the surface and subsurface of Ag/Ni(1 0 0) and reconstructed Ag/Ni(1 0 0). The calculated geometric parameters indicate the center of doped Ag is located above the Ni(1 0 0) surface owing to the size mismatch. The C binding on the alloy surface is substantially weakened, arising from the less attractive interaction between C and Ag atoms, while in the subsurface, the C adsorption is promoted as the Ag coverage is increased. The effect of substitutional Ag on the adsorption property of Ni(1 0 0) is rather short-range, which agrees well with the analysis of the projected density of states. Seven pathways are constructed to explore the C diffusion behavior on the bimetallic surface. Along the most kinetically favorable pathway, a C atom hops between two fourfold hollow sites via an adjacent octahedral site in the subsurface of reconstructed Ag/Ni(1 0 0). The “clock” reconstruction which tends to improve the surface mobility, is more favorable on the alloy surface because the c(2 × 2) symmetry is inherently broken by the Ag impurity. As a consequence, the local lattice strain induced by the C transport is effectively relieved by the Ag-enhanced surface mobility and the C diffusion barrier is lowered from 1.16 to 0.76 eV.  相似文献   

16.
17.
The dissociative adsorption of ethylene (C2H4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges.DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces.The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms.Finally a high surface area NiAg alloy catalyst supported on MgAl2O4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.  相似文献   

18.
K. Bobrov 《Surface science》2007,601(15):3268-3275
We present results of an STM investigation of water interaction with an oxygen covered Ag(1 1 0) in the case of the O(4 × 1) reconstructed surface. Regarding the formation of one-layer-thick silver nanostructures previously demonstrated, they point to the key role of the surface temperature at which the water dosing is made. Indeed we measure silver nanostructuring for dosing temperatures lower than 235 K. We follow, in real time during the water dosing, the modifications induced at the surface for two temperatures of 200 K and 240 K. Drastic differences are exhibited. At 200 K, after an initial stage of formation of molecular assembly strips along the [0 0 1], the reactive process leading to the conversion to an OH layer occurs clearly going along with the appearance and development of quasi-rectangular silver nanostructures. At 240 K, no such initial phase is evidenced. The complete conversion to an OH row structure of the scanned area occurs with no concomitant silver nanostructure formation. The dynamical behaviour of the reaction front allows the unravelling of the key role of the developing OH row ends intersecting the remaining Ag-O rows as particular reactive adsorption sites for the completion of the OH layer.  相似文献   

19.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

20.
The ordered arrays of Ag nanowires and nanodots have been grown in ultra-high vacuum on the Si(5 5 7) surface containing regular steps of three bilayer height. Formation of Ag nanostructures have been studied by scanning tunneling microscopy, low energy electron diffraction and Auger electron spectroscopy at room temperature. It was shown that a sample exposure in the vacuum before Ag growth affects the shape of the forming Ag islands. This effect is caused by oxygen adsorption on the silicon surface from the residual atmosphere in the vacuum chamber. When Ag is deposited on the clean silicon surface the islands, overlapping several (1 1 1) neighboring terraces, form. The arrays of silver nanowires elongated along steps and silver nanodots, arranged in lines parallel to the steps, can be formed on the Si(5 5 7) surface depending on the amount of adsorbed oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号