首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of the palladium (Pd) overlayers on oxidized tungsten (W) tips has been studied by Field Emission Microscopy (FEM). The effect of thermal treatment on the interaction of Pd with the support and chemisorption of CO on variously treated Pd-containing samples has been investigated. The results are discussed in relation to complementary macroscopic experiments by synchrotron radiation excited photoelectron spectroscopy (SRPES) and thermally programmed desorption (TPD) of carbon monoxide (CO) on a polycrystalline W foil. A distinct influence of support pre-oxidation on the Pd layer growth has been demonstrated. Two types of oxidized supports have been used: tungsten with oxygen pre-adsorbed at room temperature (RT) and then heated to 700 K (WOx/W (RT) system) and tungsten oxidized at 1300 K (WOx/W (1300 K) system) in situ. The surface of WOx/W (1300 K) sample is fully oxidized in contrast to WOx/W (RT), where the presence of un-oxidized patches has been demonstrated by SRPES measurements. A Pd layer grows on the WOx/W (RT) surface mostly on the densely populated planes (1 1 0) and (2 1 1) of the W tip. Heating of this system up to 700 K results in disaggregation of the original Pd layer. Pd clusters on the tungsten tip oxidized at 1300 K are localized on the atomically rough (1 1 1) plane. The observed differences in CO adsorption on the aforementioned types of investigated samples can be attributed to differences in the chemical nature of their surfaces.  相似文献   

2.
We present a study on the adsorption and thermal decomposition of C60 on Co covered Si(111)-7 × 7 using scanning tunneling microscopy and X-ray photoelectron spectroscopy. Co-induced magic clusters grown on Si(111)-7 × 7 are identified as a possible adsorption site where 51 ± 3% of C60 molecules adsorb at room temperature. On Co/Si(111)-7 × 7, C60 molecules start to decompose at 450 °C, and are completely dissociated to form SiC by 720 °C. This temperature is significantly lower than 910 °C at which C60 completely dissociates on clean Si(111)-7 × 7. This is a possible low temperature method for growing crystalline SiC films using C60 as a precursor molecule.  相似文献   

3.
O. Ozturk  S. Ma  J. Zhou  D.A. Chen 《Surface science》2007,601(14):3099-3113
Pt, Rh, and Pt-Rh clusters on TiO2(1 1 0) have been investigated by scanning tunneling microscopy (STM), soft X-ray photoelectron spectroscopy (sXPS), and low energy ion scattering (LEIS). The surface compositions of Pt-Rh clusters are Pt-rich (66-80% Pt) for room temperature deposition of both 2 ML of Pt on 2 ML of Rh (Rh + Pt) and 2 ML of Rh on 2 ML of Pt (Pt + Rh). Pt and Rh atoms readily diffuse within the clusters at room temperature, and although diffusion is slower at 240 K, intermixing of Pt and Rh still occurs. The binding energies of surface and bulk states for Rh(3d5/2) and Pt(4f7/2) can be distinguished in sXPS studies, and an analysis of these spectra indicates that the surface compositions of the Pt + Rh and Rh + Pt clusters are similar at room temperature but not identical. In addition to sintering, the pure Pt, pure Rh and Pt-Rh clusters become completely encapsulated by titania upon heating to 700 K. sXPS investigations show that annealing the clusters to 850 K induces reduction of titania support to Ti+2 and Ti+3, with the extent of reduction being the greatest for Pt, the least for Rh and intermediate for Pt-Rh. We propose that TiO2 is reduced at the metal-titania interface on top of the clusters, not at the base of the clusters. Furthermore, the extent of titania reduction is greater for metal clusters with weaker metal-oxygen bonds because oxygen atoms are less likely to migrate to the top of the clusters, and therefore the encapsulating titania is oxygen-deficient.  相似文献   

4.
Methylidyne (CH) was prepared on Pt(1 1 1) by three methods: thermal decomposition of diiodomethane (CH2I2), ethylene decomposition at temperatures above 450 K, and surface carbon hydrogenation. Methylidyne and its precursors are characterized by reflection absorption infrared spectroscopy (RAIRS). The C-I bond of diiodomethane breaks upon adsorption to produce methylene (CH2), which decomposes to methylidyne at temperatures above 130 K. Above 200 K, methylidyne is the only hydrocarbon species observed with RAIRS, although reaction channels for the formation of methane (CH4) and ethylene (C2H4) are indicated by temperature programmed desorption (TPD). As is well known from numerous previous studies, ethylene decomposes to ethylidyne (CCH3) upon exposure to Pt(1 1 1) at 410 K. Upon annealing to 450 K, ethylidyne dissociates through two reaction pathways, dehydrogenation to ethynyl (CCH) and C-C bond scission to methylidyne. Ethylene dehydrogenation on the surface at 750 K and under low ethylene exposures produces surface carbon that can be hydrogenated to methylidyne with C-H and C-D stretch frequencies of 2956 and 2206 cm−1, respectively. Hydrogen co-adsorption on the surface causes these frequencies to shift to higher values. Methylidyne is stable on Pt(1 1 1) to temperatures up to 500 K.  相似文献   

5.
Synchrotron based photoemission spectroscopy was used to study the adsorption of tungsten hexacarbonyl on SiO2 surfaces modified by potassium. Results were compared with the ones obtained when no potassium was present. Experiments using W4f and Si2p intensities variations show that, at 140 K, the tungsten hexacarbonyl growth proceeds via a simultaneous multilayer mode for the two kinds of surfaces but with differences in compositions of growing layers. Indeed, it is evidenced that, even at cryogenic temperatures, the presence of potassium induces decomposition of a significant part of tungsten hexacarbonyl molecules through a strong interaction between tungsten and potassium atoms in opposition to potassium-free surface cases where W(CO)6 molecules are simply physisorbed. Additional irradiation of adsorbed molecules with photons coming from 0-order synchrotron radiation, subsequent going back to room temperature and additional thermal treatments up to about 700 K were then used to induce further decomposition of the adsorbed precursor. It allows as well to get rid of carbon and, finally, to stabilize different W-based species on the surface. The state of tungsten remaining on the surface is then strongly influenced by presence of potassium. When potassium is present, highly oxidized tungsten species are observed, whereas reduced species are mainly detected for potassium-free surfaces. Moreover, as diffusion of potassium is revealed during formation of tungsten phase, one should guess that potassium plays a crucial role in tungsten oxidation mechanism.  相似文献   

6.
The adsorption of S2 on the Si(1 1 1)-(7 × 7) surface and the interaction of copper and sulfur on this sulfur-terminated Si(1 1 1) surface have been studied using synchrotron irradiation photoemission spectroscopy and scanning tunneling microscopy. The adsorption of S2 at room temperature results in the passivation of silicon dangling bonds of Si(1 1 1)-(7 × 7) surface. Excessive sulfur forms Sn species on the surface. Copper atoms deposited at room temperature directly interact with S-adatoms through the formations of Cu-S bonds. Upon annealing the sample at 300 °C, CuSx nanocrystals were produced on the sulfur-terminated Si(1 1 1) surface.  相似文献   

7.
X.F. Hu 《Surface science》2006,600(11):2252-2257
Temperature dependent infrared study of water adsorption on the bc-plane of a Bi2Sr2CaCu2O8 (Bi2212) single crystal reveals that water is molecularly physisorbed, and forms hydrogen-bonded clusters in the temperature range of 85-150 K. Although dissociative adsorption is expected on surfaces terminated with Ca-O and Cu-O groups, no dissociated species is detected. The main absorption bands occur between 3200 and 3500 cm−1 and are assigned to the O-H stretching and the overtone of O-H bending. For exposures higher than 1.0 L, the sticking coefficients are similar for different temperatures. The features in the O-H stretch region for water clusters red-shift as a function of temperature between 85 and 140 K. Water clusters have an amorphous structure between 85 and 140 K, and form a crystalline structure at 150 K.  相似文献   

8.
Oxygen adsorption on the α-Mo2C(0 0 0 1) surface has been investigated with X-ray photoelectron spectroscopy and valence photoelectron spectroscopy utilizing synchrotron radiation. It is found that oxygen adsorbs dissociatively at room temperature, and the adsorbed oxygen atoms interact with both Mo and C atoms to form an oxycarbide layer. As the O-adsorbed surface is heated at ≧800 K, the C-O bonds are broken and the adsorbed oxygen atoms are bound only to Mo atoms. Valence PES study shows that the oxygen adsorption induces a peculiar state around the Fermi level, which enhances the emission intensity at the Fermi edge in PES spectra.  相似文献   

9.
The dissociative adsorption of ethylene (C2H4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges.DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces.The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms.Finally a high surface area NiAg alloy catalyst supported on MgAl2O4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.  相似文献   

10.
The interaction between palladium and the (1 1 0) surface of a TiO2 single crystal and the electronic properties of the system were studied by means of photoelectron spectroscopy (core levels and valence band) and resonant photoemission for Pd coverage in the sub- and monolayer range. We performed the metal depositions at room temperature. Similarly to copper, platinum and rhodium, palladium does not reduce titanium, has metallic character already from a quite early deposition, grows with a 3D-island mode and the interactions between palladium and TiO2 are very weak. Annealing treatments at 400 °C provoke a change in the morphology of the palladium clusters and the formation of islands characterized by a higher ratio between volume and area in contact with the substrate.  相似文献   

11.
J.B. Park  D.A. Chen 《Surface science》2006,600(14):2913-2923
The growth of Pt on clusters on TiO2(1 1 0) in the presence and absence of Rh was investigated by scanning tunneling microscopy (STM) for Pt deposited on top of 0.3 ML Rh clusters (Rh + Pt). In situ STM studies of Pt growth at room temperature show that bimetallic clusters are produced when Pt is directly incorporated into existing Rh clusters or when newly nucleated clusters of pure Pt coalesce with existing Rh clusters. Low energy ion scattering experiments demonstrate that Rh is still present at the surface of the clusters even after deposition of 2 ML of Pt, indicating that Rh atoms can diffuse to the cluster surface at room temperature. Rh clusters were found to seed the growth of Pt clusters at room temperature as well as 100 K and 450 K. Furthermore, clusters as large as 100 atoms were observed to be mobile on the surface at room temperature and 450 K, but not at 100 K. Pt deposition at 100 K exhibited more two-dimensional cluster growth and higher cluster densities compared to room temperature experiments due to the lower diffusion rate. Increased diffusion rates at 450 K resulted in more three-dimensional cluster growth and lower densities for pure Pt growth, but cluster densities for Pt + Rh growth were the same as at room temperature.  相似文献   

12.
The adsorption of ethylene on Cu12Pt2 clusters has been studied within the density functional theory (DFT) approach to understand the high ethylene selectivity of Cu-rich Pt-Cu catalyst particles in the reaction of hydrogen-assisted 1,2-dichloroethane dechlorination. The structural parameters for Cu12Pt2 clusters with D4h, D2d, and C3v symmetry have been calculated. The relative stability of the isomeric Cu12Pt2 clusters follows the order: C3v > D2d > D4h. Each isomer has an active site for ethylene adsorption that consists of a single Pt atom surrounded by Cu atoms. The interaction of ethylene with the active site yields a π-C2H4 adsorption complex. The strongest π-C2H4 complex forms with the cluster of C3v symmetry; the bonding energy, ΔEπ(C2H4), is −15.6 kcal mol−1. The bonding energies for the π-C2H4 complex with Cu14 and Pt14 clusters are −6.5 and −18.8 kcal mol−1, respectively.The addition of Pt to Cu modifies the valence spd-band of the cluster as compared to a Cu14 cluster. The DOS near the Fermi level increases when C2H4 adsorbs on the Cu12Pt2 cluster. As well, the center of the d-band shifts toward lower binding energies. Ethylene adsorption also induces a number of states below the d-band. These states correspond to those of gas-phase C2H4.The vibrational frequencies of C2H4 adsorbed on the clusters of D4h and C3v symmetry have been calculated. The phonon vibrations occur below 250 cm−1. The intense bands around 200 cm−1 are attributed to stretching vibrations of the Pt-Cu bonds normal to the cluster surface. The stretching vibrations of the Pt-C bonds depend on the local structure of the active site: νs(Pt-C) = 268 cm−1 and νas(Pt-C) = 357 cm−1 for the cluster of the D4h symmetry; νs(Pt-C) = 335 cm−1 and νas(Pt-C) = 397 cm−1 for the cluster of the C3v symmetry. Bands in the range of 800-3100 cm−1 are attributed to vibrations of the adsorbed C2H4 molecule. The signature frequencies of the π-C2H4 adsorption complex are the δs(CH2) deformation vibration at ∼1200 cm−1 and the ν(C-C) stretching vibration at ∼1500 cm−1. These vibration are absent for di-σ-C2H4 adsorption complexes.  相似文献   

13.
Tianpin Wu 《Surface science》2009,603(17):2764-97
Small Pd clusters Pdn (n = 1, 4, 7, 10, 13) deposited on alumina/NiAl(110) at room temperature were examined by X-ray photoelectron spectroscopy (XPS), as-deposited and after exposure to O2 at temperatures ranging from 100 to 500 K. After O2 exposure at 100 K, the Pd clusters showed XPS shifts indicative of oxidation. The exception was Pd4, which did not oxidize under any conditions. The inertness of Pd4/alumina/NiAl(110) appears to be correlated with a significantly higher-than-expected Pd 3d binding energy, which we attribute to a particularly stable valence shell. None of the clusters examined oxidized during O2 exposures at 300 K or above, but He+ scattering showed that oxygen was bound on the cluster surfaces. Upon heating, all the oxygen associated with these small clusters appeared to spill over and react with the alumina/NiAl(110) support.  相似文献   

14.
The initial interaction of water vapor with polycrystalline uranium surfaces at low temperatures (LT, 200 K), was studied by combined measurements utilizing Direct Recoil Spectrometry (DRS), Auger electron Spectroscopy (AES) and X-ray Photoelectron Spectroscopy (XPS). Three stages of water dissociation and adsorption can be observed: Stage (1) 0-0.6 oxygen monolayer coverage: full (H2O → O + 2H) dissociation is dominant, coexisting with partial dissociation (H2O → OH + H). In contrast to room temperature, where the adsorption is of a Langmuir type, in the present low temperature case it is a precursor-state type - the oxygen accumulation is linear, indicating that a constant fraction of the water molecules impinging on the surface diffuses to a dissociation and adsorption site. Only minor oxidation of the uranium occurs. Stage (2) 0.6-full oxygen coverage: only partial dissociation occurs. Still only minor oxidation of uranium takes place. Stage (3) buildup of a second hydroxyl layer, concurrent with slow continuous oxidation of uranium. Subsequent heating of the sample after the described exposure was accompanied by additional continuous oxidation. Above ∼230 K, the main process seems to be OH decomposition and desorption. A comparison is made to the dissociation and adsorption processes at room temperature.  相似文献   

15.
Solid state 19F NMR in the temperature range from 96 to 366 K and room temperature EPR studies of fluorinated buckminsterfullerene C60F58 have been carried out. The temperature dependence of the line width and the spin-lattice relaxation time show hindered molecular motion with the activation energy of ΔEa=1.9 kcal/mol. Neither phase transition nor random rotation of C60F58 have been obtained. The spin-lattice relaxation rate is strongly affected by the presence of paramagnetic centers, namely, dangling C-C bonds yielding localized unpaired electrons. Such broken bonds are caused by C-C bond rupture in a cage-opened structure of hyperfluorinated species.  相似文献   

16.
The oxidation of the Pd(1 1 1) surface was studied by in situ XPS during heating and cooling in 3 × 10−3 mbar O2. A number of adsorbed/dissolved oxygen species were identified by in situ XPS, such as the two dimensional surface oxide (Pd5O4), the supersaturated Oads layer, dissolved oxygen and the R 12.2° surface structure.Exposure of the Pd(1 1 1) single crystal to 3 × 10−3 mbar O2 at 425 K led to formation of the 2D oxide phase, which was in equilibrium with a supersaturated Oads layer. The supersaturated Oads layer was characterized by the O 1s core level peak at 530.37 eV. The 2D oxide, Pd5O4, was characterized by two O 1s components at 528.92 eV and 529.52 eV and by two oxygen-induced Pd 3d5/2 components at 335.5 eV and 336.24 eV. During heating in 3 × 10−3 mbar O2 the supersaturated Oads layer disappeared whereas the fraction of the surface covered with the 2D oxide grew. The surface was completely covered with the 2D oxide between 600 K and 655 K. Depth profiling by photon energy variation confirmed the surface nature of the 2D oxide. The 2D oxide decomposed completely above 717 K. Diffusion of oxygen in the palladium bulk occurred at these temperatures. A substantial oxygen signal assigned to the dissolved species was detected even at 923 K. The dissolved oxygen was characterised by the O 1s core level peak at 528.98 eV. The “bulk” nature of the dissolved oxygen species was verified by depth profiling.During cooling in 3 × 10−3 mbar O2, the oxidised Pd2+ species appeared at 788 K whereas the 2D oxide decomposed at 717 K during heating. The surface oxidised states exhibited an inverse hysteresis. The oxidised palladium state observed during cooling was assigned to a new oxide phase, probably the R 12.2° structure.  相似文献   

17.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

18.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   

19.
A.P. Farkas  F. Solymosi 《Surface science》2006,600(11):2355-2363
The adsorption and surface reactions of propyl iodide on clean and potassium-modified Mo2C/Mo(1 0 0) surfaces have been investigated by thermal desorption spectroscopy (TPD), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) in the 100-1200 K temperature range. This work is strongly related to the better understanding of the catalytic effect of Mo2C in the conversion of hydrocarbons. Potassium was found to be an effective promoter: it induced the rupture of C-I bond in the adsorbed C3H7I even at 100 K. The extent of C-I bond scission varied approximately linearly with the concentration of K coverage at the adsorption temperature of 100 K. As revealed by HREELS and TPD measurements the primary products of the dissociation are C3H7 and I. The former one was stabilized by potassium and underwent dehydrogenation and hydrogenation to give propene and propane. The desorption of both compounds is reaction-limited process. A fraction of propyl groups was converted into di-σ-bonded propene, which was stable up to ∼380 K. The coupling reaction of propyl species was also facilitated by potassium and resulted in the formation of hexane and hexene with Tp ∼ 230-250 K. Hydrogen was released with Tp = 390 K, indicative of a desorption limited process. The effect of potassium was explained by the extended electron donation to adsorbed propyl iodide in one hand, and by the direct interaction between potassium and I on the other hand. This was reflected by the shift of the desorption of potassium from the coadsorbed layer at and above 1.0 ML to higher temperature, and by the coincidal Tp values (∼700 K) of potassium and iodine. The formation of KI was also supported by the appearance of a loss feature at 650 cm−1 in the HREEL spectra attributed to a phonon mode of KI.  相似文献   

20.
To investigate the possibility of manipulating the surface chemical properties of finely dispersed metal films through ferroelectric polarization, the interaction of palladium with oppositely poled LiNbO3(0 0 0 1) substrates was characterized. Low energy ion scattering indicated that the Pd tended to form three-dimensional clusters on both positively and negatively poled substrates even at the lowest coverages. X-ray photoelectron spectroscopy (XPS) showed an upward shift in the binding energy of the Pd 3d core levels of 0.9 eV at the lowest Pd coverages, which slowly decayed toward the bulk value with increasing Pd coverage. These shifts were independent of the poling direction of the substrate and similar to those attributed to cluster size effects on inert supports. Thus, the spectroscopic data suggested that Pd does not interact strongly with LiNbO3 surfaces. The surface chemical properties of the Pd clusters were investigated using CO temperature programmed desorption. On both positively and negatively poled substrates, CO desorption from freshly deposited Pd showed a splitting of the broad 460 K desorption peak characteristic of bulk Pd into distinct peaks at 270 and 490 K as the Pd coverage was decreased below 1.0 ML; behavior that also resembles that seen on inert supports. It was found that a small fraction of the adsorbed CO may dissociate (<2%) for Pd on both positively and negatively poled substrates. The thermal response of the smaller Pd clusters on the LiNbO3 surfaces, however, was different from that of inert substrates. In a manner similar to Nb2O5, when CO desorption experiments were carried out a second time, the adsorption capacity decreased and the higher temperature desorption peak shifted from 490 K to below 450 K. This behavior was independent of the substrate poling direction. Thus, while there was evidence that LiNbO3 does not behave as a completely inert support, no significant differences between positively and negatively poled surfaces were observed. This lack of sensitivity of the surface properties of the Pd to the poling direction of the substrate is attributed to the three-dimensional Pd clusters being too thick for their surfaces to be influenced by the polarization of the underlying substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号