首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We combine ab initio density functional and quantum transport calculations based on the nonequilibrium Green's function formalism to compare structural, electronic, and transport properties of Mo6S6-xIx nanowires with carbon nanotubes. We find systems with x=2 to be particularly stable and rigid, with their electronic structure and conductance close to that of metallic (13,13) single-wall carbon nanotubes. Mo6S6-xIx nanowires are conductive irrespective of their structure, more easily separable than carbon nanotubes, and capable of forming ideal contacts to Au leads through thio groups.  相似文献   

2.
魏燕  胡慧芳  王志勇  程彩萍  陈南庭  谢能 《物理学报》2011,60(2):27307-027307
运用第一性原理的密度泛函理论,结合非平衡格林函数,研究了氮原子取代掺杂手性单壁(6,3)碳纳米管的电子结构和输运特性.计算结果表明:不同构形和不同数目的氮原子取代掺杂对手性碳管的输运性质有很复杂的影响.研究发现,氮原子掺杂明显改变了碳管的电子结构,使金属型手性碳管的输运性能降低,电流-电压曲线呈非线性变化,而且输运性能随着杂质原子间间距的变化而发生显著改变.在一定条件下,金属型碳管向半导体型转变. 关键词: 手性单壁碳纳米管 氮掺杂 电子结构 输运性能  相似文献   

3.
We report first-principles calculations of conductance of carbon nanotubes between metallic electrodes. The electronic states are calculated using a numerical atomic orbital basis set in the framework of the density functional theory, and the conductance is calculated using the Green's function method. We show transmission spectra of carbon nanotubes connected to electrodes and reveal the contact effect of electrodes on the transport properties of nanotubes.  相似文献   

4.
Electronic properties of multi-defected zigzag single-walled carbon nanotubes are investigated by use of the tight-binding Green's function method. The Stone-Wales defects and the vacancies are considered. We find that the conductance sensitively depends on the realistic defect configurations for the metallic zigzag carbon nanotubes. Interestingly, the electronic transport properties of the nanotubes with three vacancies can be considered as the sum effect of two double-vacancies, while those with Stone-Wal...  相似文献   

5.
By applying non-equilibrium Green's functions in combination with density-functional theory, we investigate electronic transport properties of C60 coupled to carbon nanotubes and Li electrodes. The results show that electronic transport properties of CNT-C60-CNT and Li-C60-Li systems are completely different. Nonlinear I-V characteristic, varistor-type behavior and negative differential resistance (NDR) phenomenon are observed when electrodes are carbon nanotubes. We discuss the mechanism of I-V characteristics of CNT-C60-CNT systems in details. Our results suggest conductance, energy level of Frontier molecular orbitals, energy gap between HOMO and LUMO, the coupling between molecular orbitals and electrodes are all playing critical roles in electronic transport properties.  相似文献   

6.
We investigate the electronic properties of metallic (7,7) carbon nanotubes (CNT) in the presence of a variety of tetra- and hexa-vacancy defects, by using the first principles density functional theory (DFT) combined with the non-equilibrium Green’s function technique. From the view point of energetic stability large vacancies tend to split into pentagon and heptagon (5-7) defects. However, this does not preclude the presence of “holes” in the carbon nanotube by the nanoelectronic lithography technique. We show that the states linked to large vacancies hybridize with the extended states of the nanotubes to modify their band structure. As a consequence, the hole-like defects in the CNT lead to more prominent electronic transport compared to the situation in the defective CNT consisting of pentagon-heptagon pair defects. Our study suggests the possibility to improve the electronic properties of a defective carbon nanotube via morphological modifications induced by irradiation techniques.  相似文献   

7.
赵起迪  张振华 《物理学报》2010,59(11):8098-8103
系统地计算了各种手性碳纳米管最低导带的电子速度和有效质量的变化规律,在此基础上推断手性碳纳米管低偏压下的输运特征,计算表明:在低偏压电子输运时,同一系列(手性角相同)的各种手性金属碳纳米管的输运性质相同,与管径无关,但不同系列的手性金属碳纳米管的输运性质有明显区别;而同一系列的各种手性半导体型碳纳米管的输运性质有一定差异,但不同系列的手性半导体型碳纳米管的输运性质有着显著差异.这一结果说明:碳纳米管在低偏压下的输运特征与系列有着密切的关系,手性角是决定各种碳纳米管在低偏压下具有不同输运性质的最关键的几何参 关键词: 碳纳米管 手性角 电子速度 有效质量  相似文献   

8.
Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of low-dimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transport properties of these carbon nanomaterials are reviewed. Although these systems share the similar graphene electronic structure, confinement effects are playing a crucial role. Indeed, the lateral confinement of charge carriers could create an energy gap near the charge neutrality point, depending on the width of the ribbon, the nanotube diameter, the stacking of the carbon layers regarding the different crystallographic orientations involved. After reviewing the transport properties of defect-free systems, doping and topological defects (including edge disorder) are also proposed as tools to taylor the quantum conductance in these materials. Their unusual electronic and transport properties promote these carbon nanomaterials as promising candidates for new building blocks in a future carbon-based nanoelectronics, thus opening alternatives to present silicon-based electronics devices.  相似文献   

9.
Lu JQ  Wu J  Duan W  Liu F  Zhu BF  Gu BL 《Physical review letters》2003,90(15):156601
We investigate electronic transport properties of the squashed armchair carbon nanotubes, using tight-binding molecular dynamics and the Green's function method. We demonstrate a metal-to-semiconductor transition while squashing the nanotubes and a general mechanism for such a transition. It is the distinction of the two sublattices in the nanotube that opens an energy gap near the Fermi energy. We show that the transition has to be achieved by a combined effect of breaking of mirror symmetry and bond formation between the flattened faces in the squashed nanotubes.  相似文献   

10.
We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (I-V) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at smal...  相似文献   

11.
张华  陈小华  张振华  邱明  许龙山  杨植 《物理学报》2006,55(6):2986-2991
基于局域密度泛函理论,采用第一性原理方法,建立了对(5,5)型和(9,0)型有限长碳纳米管接枝羧基官能团的原子模型,通过计算其电子分布和态密度的变化,讨论羧基官能团对碳纳米管电子结构和电子输运特性的影响. 计算表明,接枝羧基的碳纳米管,其电子结构明显改变,其费米能级上的电子态密度下降;最高占据轨道上的非定域程度减弱,致使电子输运性能呈下降趋势. 关键词: 碳纳米管 密度泛函理论 电子结构  相似文献   

12.
李骏  张振华  王成志  邓小清  范志强 《物理学报》2013,62(5):56103-056103
石墨烯纳米带 (GNRs) 是一种重要的纳米材料, 碳纳米管可看作是GNRs卷曲而成的无缝圆筒. 利用基于密度泛函理论的第一性原理方法, 系统研究了GNRs卷曲变形到不同几何构型时, 其电子特性, 包括能带结构 (特别是带隙) 、态密度、透射谱的变化规律. 结果表明: 无论是锯齿型GNRs (ZGNRs) 或扶手椅型GNRs (AGNRs), 在其卷曲成管之前, 其电子特性对卷曲形变均不敏感, 这意味着GNRs的电子结构及输运特性有较强地抵抗卷曲变形的能力. 当GNRs 卷曲成管后, ZGNRs和AGNRs表现出完全不同的性质, ZGNRs几乎保持金属性不变或变为准金属; 但AGNRs的电子特性有较大的变化, 出现不同带隙半导体、准金属之间的转变, 这也许密切关系到碳纳米管管口周长方向上的周期性边界条件及量子禁锢的改变. 这些研究对于了解GNRs电子特性的卷曲效应、以及GNRs与碳纳米管电子特性的关系 (结构与特性的关系) 有重要意义. 关键词: 石墨烯纳米带 卷曲效应 电子特性 密度泛函理论  相似文献   

13.
We report the characterization of electronic shell filling in metallic single-walled carbon nanotubes by low-temperature transport measurements. Nanotube quantum dots with average conductance approximately (1-2)e(2)/h exhibit a distinct four-electron periodicity for electron addition as well as signatures of Kondo and inelastic cotunneling. The Hartree-Fock parameters that govern the electronic structure of metallic nanotubes are determined from the analysis of transport data using a shell-filling model that incorporates the nanotube band structure and Coulomb and exchange interactions.  相似文献   

14.
陈灵娜  马松山  欧阳芳平  肖金  徐慧 《中国物理 B》2011,20(1):17103-017103
Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.  相似文献   

15.
《Physics letters. A》2020,384(15):126302
We study source-to-sink excitation transport on carbon nanotubes using the concept of quantum walks. In particular, we focus on transport properties of Grover coined quantum walks on ideal and percolation perturbed nanotubes with zig-zag and armchair chiralities. Using analytic and numerical methods we identify how geometric properties of nanotubes and different types of a sink altogether control the structure of trapped states and, as a result, the overall source-to-sink transport efficiency. It is shown that chirality of nanotubes splits behavior of the transport efficiency into a few typically well separated quantitative branches. Based on that we uncover interesting quantum transport phenomena, e.g. increasing the length of the tube can enhance the transport and the highest transport efficiency is achieved for the thinnest tube. We also demonstrate, that the transport efficiency of the quantum walk on ideal nanotubes may exhibit even oscillatory behavior dependent on length and chirality.  相似文献   

16.
The discovery and understanding of nanoscale phenomena and the assembly of nanostructures into different devices are among the most promising fields of material science research. In this scenario, carbon nanostructures have a special role since, in having only one chemical element, they allow physical properties to be calculated with high precision for comparison with experiment. Carbon nanostructures, and carbon nanotubes (CNTs) in particular, have such remarkable electronic and structural properties that they are used as active building blocks for a large variety of nanoscale devices. We review here the latest advances in research involving carbon nanotubes as active components in electronic and optoelectronic nano-devices. Opportunities for future research are also identified.  相似文献   

17.
刘惠军 《物理学进展》2012,32(4):165-177
碳纳米管独特的一维结构和强烈的卷曲效应为外来原子提供了理想的嵌入通道。本文全面总结了近年来我们对直径仅为4A的三种单壁碳纳米管嵌锂特性的密度泛函研究工作。我们具体讨论了体系嵌锂后的结构、能量、电子、电化学等特性。由于这些超小直径的碳纳米管最初合成于沸石晶体的纳米管道,我们也讨论了碳纳米管?沸石晶体复合体系的嵌锂特性。另外,我们还研究了由(5,0)和(14,0)碳纳米管组成的双壁碳纳米管体系的嵌锂特性。我们的理论计算表明,超小直径碳纳米管及相关结构作为锂离子电池负极材料具有很好的应用前景。  相似文献   

18.
We report wide-range optical investigations on transparent conducting networks made from separated (semiconducting, metallic) and reference (mixed) single-walled carbon nanotubes, complemented by transport measurements. Comparing the intrinsic frequency-dependent conductivity of the nanotubes with that of the networks, we conclude that higher intrinsic conductivity results in better transport properties, indicating that the properties of the nanotubes are at least as much important as the contacts. We find that HNO3 doping offers a larger improvement in transparent conductive quality than separation. Spontaneous dedoping occurs in all samples but is most effective in films made of doped metallic tubes, where the sheet conductance returns close to its original value within 24 h.  相似文献   

19.
曹觉先  颜晓红  肖杨  丁建文 《中国物理》2003,12(12):1440-1444
We have calculated the differential conductance of metallic carbon nanotubes by the scatter matrix methon.It is found that the differential conductance of metallic nanotube-based devices oscillates as a function of the bias voltage between the two leads and the gate voltage.Oscillation period T is directly proportional to the reciprocal of nanotube length.In addition,we found that electronic transport properties are sensitive to variation of the length of the nanotube.  相似文献   

20.
We discuss the mesoscopic experimental measurements of electron energy dissipation, phonon thermal transport, and thermoelectric phenomena in individual carbon nanotubes. The temperature distributions in electrically heated individual multiwalled carbon nanotubes have been measured with a scanning thermal microscope. The temperature profiles along the tube axis in nanotubes indicate the bulk dissipation of electronic energy to phonons. In addition, thermal conductivity of an individual multiwalled nanotube has been measured using a microfabricated suspended device. The observed thermal conductivity is two orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. Finally, we present thermoelectric power (TEP) of individual single walled carbon nanotubes using a novel mesoscopic device. A strong modulation of TEP as a function of the gate electrode was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号