首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dilute nitrides are promising alloys in view of extending potential micro- and opto-electronics applications of GaAs technology. Orientation effects on nitrogen incorporation in GaAs have been scarcely addressed. Here, GaAsN on (1 0 0) and on As(B)- and Ga(A)-rich (1 1 1) substrates was grown by molecular beam epitaxy at different substrate temperatures. Nitrogen content measured by secondary ion mass spectrometry as a function of the growth temperature highlights the influence of orientation on nitrogen incorporation. Furthermore, thermal annealing is shown to improve the optical quality of GaAsN quantum wells whatever their substrate orientations.  相似文献   

2.
We report on GaN growth on Zn-polar ZnO substrates using plasma-assisted molecular-beam epitaxy (P-MBE). Before GaN growth, ZnO substrate annealing conditions were optimized. Reflection high-energy electron diffraction (RHEED) patterns after low-temperature GaN buffer layer annealing changed from streaky to spotty, suggesting that zinc and oxygen atoms interdiffuse from the ZnO substrate into the GaN epilayer. This interdiffusion results in a mix-polar GaN epilayer.  相似文献   

3.
We have investigated circular-polarized photoluminescence (CPL) from a novel quantum structure in which a ferromagnetic semiconductor (Ga,Mn)As is placed adjacent to the GaAs quantum well. By eliminating the contribution of the magneto-circular dichroism effect of the (Ga,Mn)As top layer from the observed CPL, we found a small but nonnegligible contribution of quantum mechanical coupling between the GaAs quantum well states and the spin-polarized states in (Ga,Mn)As.  相似文献   

4.
High-quality GaAs-based quantum cascade laser (QCL) structures for the terahertz (THz) emission have been grown by solid source molecular-beam epitaxy. Ex-situ high-resolution x-ray diffraction shows that layer thickness and its control is the most critical growth aspect and that the lasing potential of the structure can be determined by the thickness accuracy of the layers. For our samples, the thickness tolerance for working lasing structures emitting approximately 100 μm was determined to be minimally above 1% for a 15 μm active region which was composed of 54.6 nm cascade cells. Increasing interface roughness adversely affects the lasing threshold and power. Presented at 5-th International Conference Solid State Surfaces and Interfaces, November 19–24, 2006, Smolenice Castle, Slovakia  相似文献   

5.
Surface segregation of group V dopant during thin film epitaxy of Si/SiGe heterostructures causes severe limitation on the sharpness of n-type doping profiles in pn junctions. Existing techniques for removal of surface segregated arsenic suffer from either high thermal budget or aggressive (ex situ) wet chemical etching. An in situ low temperature method is clearly desirable, particularly for device structures with high Ge content such as resonant tunnelling diodes, in order to minimize diffusion of the matrix elements as well as maintain structural integrity. In situ etching by atomic hydrogen is shown to be ideal for this purpose. The reaction mechanism ensures that this can only be a low temperature process and the method is shown to be highly effective and selective in the removal of surface segregated As. In comparison with other techniques, atomic hydrogen etching is also shown to be less aggressive and has a smaller impact on the surface/interface quality.  相似文献   

6.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   

7.
The Ge growth on SiC(0 0 0 1) follows a Stranski–Krastanov mode for Si-rich (3×3) and reconstructed surfaces. For Ge deposit in particular temperature conditions, a new (4×4) superstructure takes place and the reflection high energy electron diffraction (RHEED) specular spot intensity presents one oscillation proving a wetting layer formation. An island nucleation is then ascertained by the oscillation vanishing and by the appearance of a k-modulated RHEED pattern. On the other hand, on a C-rich surface, a direct Ge island nucleation is observed from the first growth stage. Indeed, for 1 ML Ge, the RHEED diagram consists in spots and rings, and the atomic force microscopy analysis indicates a high density (8×1010 cm−2) of small islands (30 nm, h3 nm). The RHEED spot analysis shows a preferential epitaxial relationship with the substrate Ge(1 1 1)//SiC(0 0 0 1). The Ge–C bonding being energetically unfavourable, Ge tends to form islands immediately rather than wetting the graphite-terminated surface. The Ge growth mode on C-rich surface is thus of Volmer–Weber type.  相似文献   

8.
The bilayer InAs/In0.36Ga0.64As/GaAs(311B) quantum dots (QDs), including one InAs buried quantum dot (BQD) layer and the other InAs surface quantum dot (SQD) layer, have been grown by molecular beam epitaxy (MBE). The optical properties of these three samples have been studied by the piezoreflectance (PzR) spectroscopy. The PzR spectra do not exhibit only the optical transitions originated from the InAs BQDs, but the features originated from the InAs SQDs. After the InAs SQDs have been removed chemically, those optical transitions from InAs SQDs have been demonstrated clearly by investigating the PzR spectra of the residual InAs BQDs in these samples. The great redshift of these interband transitions of InAs SQDs has been well discussed. Due to the suitable InAs SQD sizes and the thickness of In0.36Ga0.64As layer, the interband transition of InAs SQDs has been shifted to ∼1.55 μm at 77 K.  相似文献   

9.
W.M. McGee 《Surface science》2006,600(15):194-197
The breakdown in surface morphology during the growth of an 8 nm thick Ga0.7In0.3N0.05As0.95 layer has been investigated by scanning tunnelling microscopy. During initial growth (<0.5 nm) the alloy layer is planar but strained. Lateral composition modulation due to spinodal decomposition leads to the co-existence of tensile strained N-rich regions and compressively strained N-poor regions, creating an oscillatory strain field (OSF) across the surface. The overall strain increases with layer thickness up to ∼0.5 nm, after which it is relieved by a transition from two-(2D) to three-dimensional (3D) growth, which manifests itself as an undulating, pitted layer. We propose that the region at the bottom of each pit is N-rich and that overgrowth of such regions is inhibited, thereby avoiding the strain caused by lattice mismatch. The results offer insight into the mechanisms involved in the breakdown of the 2D growth of thin dilute nitride layers at relatively high N concentrations.  相似文献   

10.
《中国物理 B》2021,30(7):78104-078104
A high quality epitaxial Si layer by molecular beam epitaxy(MBE) on Si(001) substrates was demonstrated to fabricate a channel with low density defects for high-performance Fin FET technology. In order to study the effects of fin width and crystallography orientation on the MBE behavior, a 30 nm thick Si layer was deposited on the top of an etched Si fin with different widths from 10 nm to 50 nm and orientations of 100 and 110. The result shows that a defect-free Si film was obtained on the fin by MBE, since the etching damage was confined in the bottom of the epitaxial layer. In addition, the vertical growth of the epitaxial Si layer was observed on sub-10 nm 100 Si fins, and this was explained by a kinetic mechanism.  相似文献   

11.
GaInNAs/GaAs quantum wells grown by molecular beam epitaxy under different arsenic pressures have been studied using photoluminescence (PL), X-ray diffraction (XRD) and secondary-ion mass spectrometry (SIMS). The best optical properties are achieved with the V/III beam equivalent pressure ratio (V/IIIBEP) of 10. The PL emission wavelength remains unchanged for 8V/IIIBEP12, suggesting that within this range neither the alloy composition nor the nitrogen sticking coefficient is changed. For the lower and higher V/IIIBEP ratios the PL wavelength is red-shifted or blue-shifted, respectively. The XRD results indicate that the nitrogen incorporation into the group-V sub-lattice is enhanced at low As pressures and reduced at high As pressures. The PL behaviour can thus be understood as a competition between As and N adatoms in occupying anion lattice sites.  相似文献   

12.
InAs quantum dots (QDs) on GaAs (0 0 1) substrates were grown by Molecular Beam Epitaxy (MBE) using two growth temperatures. Photoluminescence (PL) pump power dependence measurements at low temperature were carried out for sample grown at higher temperature (520 °C). With increasing excitation density, the ground-state transition energy is found to decrease by 8 meV, while the excited-state transition energies exhibit resonance behaviour. The redshift of the ground-state emission was related to the band-gap renomalization (BGR) effect whereas the blueshift of the excited-state emissions was assigned to the compensation between filling of fine structure states and BGR effects. Using a quasi-resonant PL measurement, we have shown that the renormalization of the band-gap had to occur in the QD barrier.  相似文献   

13.
The detailed influence of ferrocene in a low-pressure, fuel-rich, laminar, premixed propene/oxygen/argon flat flame was investigated experimentally using molecular beam sampling mass spectrometry (MBMS), laser-induced fluorescence (LIF), and compared to numerical simulations. MBMS was applied to analyze the species profiles of important intermediates in the flames with and without ferrocene doping. The concentration profile of iron atoms was measured with absorption sensitive LIF, which provides absolute number densities without additional calibrations. The flame temperature was obtained by two-line OH LIF measurements. One dimensional numerical simulations of the flames using detailed models from the literature were performed and the modeling results are compared with the experimental measurements. The iron measurements show reasonable agreement with the numerical simulation, while some discrepancies were found at larger heights. The MBMS measurements show a decrease in flame velocity when ferrocene was added, which was not provided by the model.  相似文献   

14.
A nitrogen-related electron trap (E1), located approximately 0.33 eV from the conduction band minimum of GaAsN grown by chemical beam epitaxy, was confirmed by investigating the dependence of its density with N concentration. This level exhibits a high capture cross section compared with that of native defects in GaAs. Its density increases significantly with N concentration, persists following post-thermal annealing, and was found to be quasi-uniformly distributed. These results indicate that E1 is a stable defect that is formed during growth to compensate for the tensile strain caused by N. Furthermore, E1 was confirmed to act as a recombination center by comparing its activation energy with that of the recombination current in the depletion region of the alloy. However, this technique cannot characterize the electron−hole (e-h) recombination process. For that, double carrier pulse deep level transient spectroscopy is used to confirm the non-radiative e-h recombination process through E1, to estimate the capture cross section of holes, and to evaluate the energy of multi-phonon emission. Furthermore, a configuration coordinate diagram is modeled based on the physical parameters of E1.  相似文献   

15.
Detailed theoretical analysis of the temperature dependence of two-dimensional electron gas mobility data in GaAs1−xNx/Al0.38Ga0.62As samples (x=0, 0.1% and 0.4%) shows that, as x increases, the dislocation density and the number of ionized impurities in the potential well increase by a factor of ∼ ×300 and ∼ ×500, respectively.  相似文献   

16.
Germanium dots have been grown on high twist angle (twist angle as high as 20°) molecular bonded silicon (0 0 1) substrates. We show that, depending on the thickness of the silicon film, the strain field generated by an ordered array of mixed edge interfacial tilt (miss-cut) dislocations may induce an ordered growth of germanium dots. We also show that in order to observe an influence of the mixed edge interfacial dislocations on the growth of germanium dots, the thickness of the film has to be much lower that the period of the mixed edge dislocations array. Germanium dots grown by molecular beam epitaxy on 10-15 nm thick silicon films with the period of tilt dislocation array of 43 nm show a high degree of self-ordering.  相似文献   

17.
The influence of annealing on the concentration profiles of boron implanted into silicon with does of 1014 ions/cm2 up to 1016 ions/cm2 and an energy of 70 keV was studied. The concentration profiles were measured with Secondary Ion Mass Spectrometry (SIMS). The broadening of the concentration profiles during annealing can be described as a superposition of effects resulting from a relatively immobile and a mobile boron fraction. The properties of the immobile boron fraction were studied by measuring the influence of a boron implantation on the distribution of a homogeneous boron background dope. From these experiments it was concluded that the immobile boron fraction consists of boron precipitates. The properties of the mobile fraction were studied from concentration profiles that were obtained after annealing during different periods at the same temperature. It was found that during the initial stage of the annealing process a fast broadening of the profile occurs; this was assumed to be due to an interstitial type boron diffusion. After prolonged annealing the much slower substitutional type diffusion prevails, due to trapping of the interstitial boron atoms by vacancies. The reliability of the SIMS method, as applied to profile measurements, was checked for the high boron doses used in this investigation. Excessive boron precipitates, obtained after annealing of a high dose, such as 1016 ions/cm2 at about 1000°C, appear to give some increase of the ion yield.  相似文献   

18.
Highly ordered pyrolytic graphite was exposed to radio-frequency methane plasma to produce a hydrogen-terminated carbon surface. The effects of treatment parameters, namely exposure time, applied power and methane pressure, upon the treated surfaces’ chemical and morphological properties were systematically investigated. Scanning tunnelling microscopy measurements showed growth features on the plasma treated surface, the coverage of which was shown to increase with plasma exposure time or applied plasma power and decrease with gas pressure. Analyses of post-treated surface structures (via static secondary ion mass spectrometry with the aid of principle component analysis) showed an increase in surface hydrogen with plasma exposure time, applied plasma power and decreasing gas pressure. The results of these analyses were further supported by elastic recoil detection analysis measurements, which showed similar trends for the experimental parameters on the resultant surface hydrogen content.  相似文献   

19.
The evolution of an organic molecule after sputtering from a gold surface has been analyzed by classical molecular dynamics and ab initio calculations to gain insight into the ionization and fragmentation processes occurring in SIMS. The calculated ionization potential (6.2 eV) of the tetraphenylnaphthalene (TPN) molecule has been found to be close to the unimolecular dissociation energy (5.4 eV) of the most favorable reaction channel involving the loss of a phenyl ring. On the other hand, our calculations show that the internal energies of sputtered TPN molecules can be significantly larger than 5-6 eV. Therefore, it appears energetically possible to relax such excited molecules via both fragmentation and ionization.We propose to virtually decompose the TPN molecule into its basic fragments. The rationale is that, if the molecule is very excited, then separate parts (e.g. pendant phenyl rings) can interact with each other almost independently. The analysis of the molecular motion after emission shows that the oscillations along the phenyl-naphthalene bond direction, expected to induce the molecule fragmentation by the loss of a phenyl ring, are relatively small (they store only about 0.2 eV). On the other hand, the relative energy stored in the inter-phenyl interactions, modulated by their bending and responsible for ionization according to our hypothesis, oscillates over a range of 6-7 eV and favors ionization.  相似文献   

20.
Significant progresses have been made in the molecular beam epitaxy (MBE) growth of HgCdTe for high performance infrared photon detectors with the aid of in situ and ex situ characterization techniques. Superlattice interfacial layers compensate in part for the influence of non-ideal CdZnTe substrates and hence improved the material quality as well as yield. They result in photoconductive carrier recombination lifetimes approaching theoretical limits set by the intrinsic radiative and Auger recombination mechanisms for 8–14 μm long-wavelength infrared HgCdTe. Very high composition and thickness uniformities have also been achieved. However, the Urbach tail energy, which is associated with structural disorder, was found to be non-uniform for both large wafer (up to 20 × 20 mm2) and very small area (down to 200 × 200 μm2). After several years of improvements in MBE HgCdTe growth techniques, substrates once again have become a bottleneck to further improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号