首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
The Cs/Cu(1 1 1) and Na/Cu(1 1 1) systems exhibit a transient excited electronic state localized on the adsorbate. Photo-excitation of this state triggers a motion of the alkali adsorbate away from the surface, leading to vibrational excitation of the adsorbate and possibly to desorption. A theoretical study of these photo-induced processes in the case of an exciting fs laser pulse is reported, based on a time-dependent approach of the adsorbate motion. The mean energy transfer from the laser photon energy to the adsorbate motion is shown to be weak, about 1% of the photon energy. Correspondingly, the vibrational excitation to high lying levels is very weak as well as the desorption process. The initial electronic state of the photo-induced process belongs to a continuum and vibrational excitation and desorption are found to vary rapidly with the energy of the initial electronic state. Initial vibrational excitation of the alkali adsorbate is also found to efficiently favour the desorption process, leading to a drastic variation of the desorption probability with the vibrational temperature of the adsorbate. The present results for the two systems are discussed and compared, in connection with available experimental data on these systems and on similar ones.  相似文献   

2.
A scanning tunneling microscopy study has revealed that threefold-coordinated Si atoms at intrinsic sites of reconstructed (2 × 1) structure on the Si(1 1 1) surface are removed to form a surface monovacancy by an electronic mechanism under surface-specific optical transitions at 0.45 eV. This result provides direct evidence for the relaxation of excited surface electronic states as the origin of excitation-induced structural instability on semiconductor surfaces.  相似文献   

3.
We investigated desorption of chlorine atoms on Si (1 1 1)-(7 × 7) surfaces induced by hole injection from scanning tunneling microscope tips. The hole-induced desorption of chlorine atoms had a threshold bias voltage corresponding to the energy position of the S3 surface band originated in Si backbonds. The chlorine atom desorption rate was almost proportional to the square of the tunneling current. We have discussed possible mechanisms that two holes injected into Si surface states get localized at the backbonds of chlorinated Si adatoms, which induces the rupture of Cl-Si bonds to result in chlorine atom desorption.  相似文献   

4.
The desorption of Br adatoms from Br-saturated Si(1 0 0)-(2 × 1) was studied with scanning tunneling microscopy as a function of dopant type, dopant concentration, and temperature for 620-775 K. Analysis yields the activation energies and prefactors for desorption, and the former correspond to the energy separation between the Fermi level and Si-Br antibonding states. Thus, electron capture in long-lived states results in Br expulsion via a Franck-Condon transition. Analysis of the prefactors reveals that optical phonons provide the energy needed for the electronic excitation. These results show that desorption induced by an electronic transition can occur in closed system without external stimulus, and they indicate that thermally-excited charge carriers may play a general role in surface reactions.  相似文献   

5.
On metals such as Zr, during hydrogen exposure, dissolution competes with desorption; this competition can be probed by thermal desorption at different heating rates. In the case of desorption from preadsorbed hydrogen, only ∼1% of the hydrogen can be desorbed even at heating rates of >1010 K s−1. Recent measurements of the dynamics of hydrogen released by water dissociation on Zr(0 0 0 1) [G. Bussière, M. Musa, P.R. Norton, K. Griffiths, A.G. Brolo, J.W. Hepburn, J. Chem. Phys. 124 (2006) 124704] have shown that the desorbing hydrogen originates from the recombinative desorption of adsorbed H-atoms and that over 25% of the water collisions lead to hydrogen desorption. To gain further insight into the desorption and dissolution of hydrogen and in an attempt to resolve the paradox of the different desorption yields from H2 vs. H2O exposures, we report new measurements of the laser induced thermal desorption (LITD) of hydrogen from Zr(0 0 0 1) at initial temperatures down to 90 K. The low temperature was chosen because work function measurements suggested that hydrogen adsorbed into only the outermost (surface site) of the two available adsorption sites (surface and subsurface), from which we postulated much more efficient desorption at high heating rates compared to desorption from the sub-surface sites. However, hydrogen desorption by LITD from Zr(0 0 0 1) at 90 K still only accounts for 1% of the adsorbed species, the remainder dissolving into the bulk at LITD heating rates. The different yields alluded to above remain unexplained (Bussière, 2006).  相似文献   

6.
E. Demirci 《Surface science》2009,603(20):3068-3071
The condensation and desorption of nickel tetra-carbonyl (Ni(CO)4) on Cu(1 1 0) has been studied by thermal desorption spectroscopy. A quite unusual evolution of the desorption spectra is observed. First a desorption peak appears at around 140 K, which disappears with increasing coverage and merges into a clearly separated new desorption peak at around 150 K. This transformation takes place at a coverage of about 10% of a monolayer. It is suggested that the low temperature peak is due to desorption of monomers. With increasing coverage nucleation and growth of multilayer islands starts, from which the desorption energy is higher due to the higher coordination of the carbonyl molecules, compared to that of the monomers. Evaluation of the multilayer desorption spectra yields a desorption energy of 57.9 kJ/mol (0.60 eV) and an unusually high frequency factor of 1.6 × 1019 s−1.  相似文献   

7.
Photon stimulated ion desorption (PSID) studies have been performed in condensed formic acid using oxygen 1s-edge synchrotron radiation from the Brazilian synchrotron light source (LNLS), operating in a single-bunch mode. Ion formation was discussed in terms of the Auger stimulated ion desorption (ASID) and X-ray induced electron stimulated desorption (XESD) mechanisms. It is found that O 1s(C-OH) → π*(CO) and O 1s(CO) → 3s/σ*(HCO) transitions favored the production of C+, CH+, O+, O and H ions. The hydroxyl anion has not been observed while the hydroxyl cation showed low intensity or was absent. Some anion formation routes from dissociative reactions are suggested taking into account the positive ion yields.  相似文献   

8.
We have investigated photon-stimulated ion desorption from deuterated benzene (C6D6) adsorbed on Si(1 0 0) and Si(1 1 1) surfaces following C 1s core excitation. Using time-of-flight mass spectrometry combined with angle-dependent technique, we measured the dependences of mass-spectra of desorption ions on photon energies and on incident angle (θ) of synchrotron beam. We have found the ion yields for adsorbate-derived fragments of CD+ and CD2+ are enhanced in very small angles of incident X-rays. Moreover, molecular orientation effect appeared in excitation energy dependences of D+ ions from the Si(1 0 0) and Si(1 1 1) surfaces; that is, ion yield spectra measured at θ = 10° are different from that at θ = 65°. Furthermore, it was found that desorption ion yields increase greatly with decreasing incident angles. The angular dependences are consistently similar for all ion species, excitation energies, and indexes of substrates. Possible desorption processes are described on the basis of the observations.  相似文献   

9.
We utilized temperature programmed desorption (TPD) and low energy electron diffraction (LEED) to study the chemisorption of gas-phase oxygen atoms on Pt(1 0 0)-hex-R0.7° at 450 K and 573 K, and find that the types and relative populations of oxygen phases that develop are highly dependent on the surface temperature during adsorption. At both temperatures, oxygen atoms initially adsorb on defects associated with the surface reconstruction. Increasing the coverage to about 0.32 ML (monolayers) at 573 K causes deconstruction and population of a phase with apparent (3 × 1) symmetry that desorbs in a single feature centered at about 672 K. Saturating at 0.63 ML leads to the formation of an additional “complex” ordered phase that desorbs in a sharp feature exhibiting autocatalytic behavior as it shifts from approximately 631 K to 642 K. Uptake at 450 K also initiates deconstruction, but in this case two desorption maxima at about 652 K and 672 K grow simultaneously with increasing coverage to about 0.32 ML. The feature at 672 K is associated with the disordered (3 × 1) phase, while the feature at 652 K has not been previously reported. We attribute this new feature to desorption from disordered arrangements of high oxygen concentrations on (1 × 1) surface regions. As the coverage increases to about 0.51 ML, small amounts of the complex phase grow, while this “high-concentration” (1 × 1) and the (3 × 1) phases continue to develop. We conclude that the complex phase is energetically preferred over the high-concentration (1 × 1) phase, but kinetic barriers hinder its formation at 450 K, causing oxygen to become trapped in the high-concentration (1 × 1) phase. Therefore, the high-concentration (1 × 1) phase is metastable relative to the complex phase. Lastly, above about 0.51 ML, further adsorption at 450 K promotes the growth of Pt oxide islands as detailed in a future investigation.  相似文献   

10.
A.R. Khan 《Surface science》2007,601(6):1635-1641
We have studied the direct and indirect abstraction of D adatoms by H on the Si(1 0 0) surfaces by employing a pulsed H-beam. Desorptions of HD molecules is found to occur promptly as a result of direct abstraction at the beam on-cycles. In contrast, we find that D2 desorption induced by adsorption of H atoms, i.e., the so-called adsorption-induced desorption (AID), occurs even at the beam off-cycles. The D2 rate curves measured with the pulsed-H beam are decomposed into four components characterized with the reaction lifetimes of ?0.005, 0.06 ± 0.01, 0.8 ± 0.1, and 30 ± 5 s. We propose that the fastest and the second fastest AID channels are related to the thermodynamical instability of (1 × 1) dihydride domains locally formed on the (3 × 1) monodeuteride/dideuteride domains. The 0.8 s AID channel is attributed to the desorption occurring at the stage when (3 × 1) monodeuteride/dideuteride domains are built up upon H adsorption onto the (2 × 1) monohydride surface. The 30 s AID path is attributed to the thermal desorption accompanied by the shrinkage of the (3 × 1) domains which were excessively formed during the beam on-cycles on the (2 × 1) monohydride surface. Atomistic mechanisms are proposed for these three AID pathways.  相似文献   

11.
We utilized temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), and low energy electron diffraction (LEED) to investigate the oxidation of Pt(1 0 0)-hex-R0.7° at 450 K. Using an oxygen atom beam, we generated atomic oxygen coverages as high as 3.6 ML (monolayers) on Pt(1 0 0) in ultrahigh vacuum (UHV), almost 6 times the maximum coverage obtainable by dissociatively adsorbing O2. The results show that oxidation occurs through the development of several chemisorbed phases prior to oxide growth above about 1 ML. A weakly bound oxygen state that populates as the coverage increases from approximately 0.50 ML to 1 ML appears to serve as a necessary precursor to Pt oxide growth. We find that increasing the coverage above about 1 ML causes Pt oxide particle growth and significant surface disordering. Decomposition of the Pt oxide particles produces explosive O2 desorption characterized by a shift of the primary TPD feature to higher temperatures and a dramatic increase in the maximum desorption rate with increasing coverage. Based on thermodynamic considerations, we show that the thermal stability of the surface Pt oxide on Pt single crystal surfaces significantly exceeds that of bulk PtO2. Furthermore, we attribute the high stability and the acceleratory decomposition rates of the surface oxide to large kinetic barriers that must be overcome during oxide formation and decomposition. Lastly, we present evidence that structurally similar oxides develop on both Pt(1 1 1) and Pt(1 0 0), therefore concluding that the properties of the surface Pt oxide are largely insensitive to the initial structure of the Pt single crystal surface.  相似文献   

12.
The isothermal kinetics of nicotine desorption from silicon dioxide (SiO2) was investigated. The isothermal thermogravimetric curves of nicotine at temperatures of 115 °C, 130 °C and 152 °C were recorded. The kinetic parameters (Ea, ln A) of desorption of nicotine were calculated using various methods (stationary point, model constants and differential isoconversion method). By applying the “model-fitting” method, it was found that the kinetic model of nicotine desorption from silicon dioxide was a phase boundary controlled reaction (contracting volume). The values of the kinetic parameters, Ea,α and ln Aα, complexly change with changing degree of desorption and a compensation effect exists. A new mechanism of activation for the desorption of the absorbed molecules of nicotine was suggested in agreement with model of selective energy transfer.  相似文献   

13.
S.M. Driver 《Surface science》2007,601(2):510-517
We have used a novel fibre-optic low-energy electron diffraction (FO-LEED) instrument, capable of low flux measurements that minimise electron beam damage to surface overlayers, to study methanethiolate (CH3-S-) structural phases formed on Cu{1 1 1} at temperatures between 110 and 300 K. Three structural phases were seen: a (√3 × √3)R30° phase that forms at 110-140 K; a (4 × 4) phase which was observed transiently at 110 K; and a pseudo-{1 0 0} reconstructed phase which forms at room temperature. We discuss these in the context of previous studies of this system, and demonstrate the ability of the FO-LEED instrument to record high-quality LEED patterns and intensity data from a strongly beam-sensitive surface.  相似文献   

14.
S.Yu. Bulavenko 《Surface science》2006,600(5):1185-1192
The STM technique with a special Bi/W tip was used to study the interaction of hydrogen atoms with the Si(1 1 1)-7 × 7 surface. The reactivity of different room temperature (RT) adsorption sites, such as adatoms (A), rest atoms (R), and corner holes (CH) was investigated. The reactivity of CH sites was found to be ∼2 times less than that of R and A sites. At temperatures higher than RT, hydrogen atoms rearrange among A, R, and CH sites, with increased occupation of R sites (T <  300 °C). Further temperature increase leads to hydrogen desorption, where its surface diffusion plays an active role. We discuss one of the possible desorption mechanisms, with the corner holes surrounded by a high potential barrier. Hydrogen atoms have a higher probability to overcome the desorption barrier rather than diffuse either into or out of the corner hole. The desorption temperature of hydrogen from CH, R, and A sites is about the same, equal to ∼500 °C. Also it is shown that hydrogen adsorption on the CH site causes slight electric charge redistribution over neighbouring adatoms, namely, increases the occupation of electronic states on A sites in the unfaulted halves of the Si(1 1 1)-7 × 7 unit cell. Based on these findings, the indirect method of investigation with conventional W tips was suggested for adsorbate interaction with CH sites.  相似文献   

15.
A quantum mechanical photodesorption model, valid for metallic substrates and sub-picosecond laser pulses, is presented. It takes into consideration the photodesorption coordinate and models the metal hot-electron mediated desorption by a three electronic states: an ionic state of the adsorbate and two effective states representing the continuum of the metal. This multiple-state picture allows the sharing of the flow of energy injected by the laser between the adsorbate and the substrate. For the first time, the present modeling introduces the hot electrons of the metal through an optical potential based on the kinetic model developed earlier by the authors. This potential, and the resulting desorption yield, depend on the laser fluence. For CO on Cu(1 0 0) or Cu(1 1 1), the results are in fair agreement with the experimental findings.  相似文献   

16.
The etching of silicon atom from the Si(1 0 0)-p(2 × 2) surface, i.e. the desorption of SiO molecules from this surface, either clean or pre-oxidized, is investigated at the density functional theory level. The reaction paths for desorption are given as a function of the initial oxidation state of the extracted silicon atom. The associated activation energies and the atomic configurations are discussed. Particularly, it is shown that desorption of SiO molecules takes place during conventional thermal oxide growth (∼2 eV activation) via non-oxidized silicon atoms. Further SiO extraction mechanisms of higher silicon oxidation states required higher temperatures. In particular, doubly oxidized silicon atoms (Si2+) are able to decompose with an activation of ∼4 eV which corresponds to the actual temperature where decomposition of oxides is observed. This confirms the statement that decomposition of oxide layer nucleates at the interface with silicon where Si2+ has been detected thanks to XPS experiment.  相似文献   

17.
The evolution of the surface structure in dodecanethiol self-assembled monolayer on Au(1 1 1) substrate has been studied with ultra high vacuum scanning tunneling microscopy at several temperatures. The structure of substrate Au(1 1 1) surface changed suddenly at a temperature of 110 °C. The enhanced mobility of the substrate gold atoms at this temperature is attributed to the desorption of the dodecanethiol molecules.  相似文献   

18.
New types of hybrid material have been synthesized by using four different methods of immobilization of humic acid (HA) on chitin. The most stable hybrid material toward the change of medium acidity was then utilized as sorbent for Cr(III).The HA was extracted from peat soil of Gambut District, South Kalimantan, Indonesia, using the recommended procedure of International Humic Substances Society (IHSS), while the chitin was isolated from crab shell waste through deproteination using 3.5% (w/v) NaOH and followed by removal of inorganic impurities using 1 M HCl. The four methods of immobilization of HA on chitin were (i) Method A: chitin powder (4 g) was gently poured into the stirred solution of 0.4 g HA in 40 mL of 0.01 M NaOH. After overnight stirring, the solid was separated, washed with water, and dried in oven at 70 °C. (ii) Method B: gelatinous chitin (40 g) in 250 mL of 0.5 M HCl was reacted with HA (4 g) in 500 mL of 0.5 M NaOH and aged for 24 h. The product was washed with water and dried. (iii) Method C: HA powder (0.5 g) was mixed with the stirred gel of chitin (2.5 g) in 60 mL of CaCl2 saturated methanol and the mixture was then washed with the mixed solution of 25 mL of 2 M sodium citrate and ethylene glycol 1:1. The solid was separated, washed with water, and dried. (iv) Method D: the solution of HA (0.056 g) in 10 mL of 0.01 M NaOH was reacted with the gel of chitin (0.2 g) in 10 mL of CaCl2 saturated methanol. After 24 h stirring, the solid was separated from the reaction medium, washed with the mixed solution of 2 M sodium citrate and ethylene glycol 1:1, and followed by washing with water and drying. Parameters investigated in this study consisted of the stability test of the immobilized HA, as well as the rate constant (k1), capacity (b), and energy (E) of sorption as well as the rate constant of desorption (k−1). The k1 and k−1 were determined according to a kinetic model of first order sorption reaching equilibrium, while the b and E were determined according to the Langmuir isotherm model.Compared to HA, Methods, A, C, and D; Method B produced the most stable immobilization of HA on chitin. The hybrid material (Chitin-HA) synthesized through Method B was stable in the acidity range that equivalent to pH 2.0-11.0. At the acidity giving maximum sorption, i.e. pH 5, the presence of immobilized HA on the Chitin-HA enhanced more than three times the k1 and k−1, i.e. from 0.057 min−1 and 8.51 × 10−4 (min−1) (mol/L) for chitin to 0.183 min−1 and 3.27 × 10−3 (min−1) (mol/L) for the Chitin-HA. On the contrary, the presence of HA on Chitin-HA only gave small increase on b and small decrease on E. The values of b and E for Cr(III) on chitin were 1.45 × 10−2 mol/g and 23.12 kJ/mol, respectively, while those on Chitin-HA were 1.78 × 10−2 mol/g and 19.95 kJ/mol, respectively.  相似文献   

19.
Auger-electron-photoion coincidence (AEPICO) studies of photon-stimulated ion desorption (PSID) for condensed acetonitrile induced by carbon core excitation have been performed to elucidate the desorption mechanism related to the Auger process. We have detected only the H+ ion in AEPICO spectra. The total ion yield spectrum divided by the total electron yield shows that the desorption efficiency is largely increased at the resonant excitation to C---H*. We have also measured the Auger electron spectrum and the AEPICO yield spectrum at the C---H* excitation. The AEPICO yield spectrum shows enhancement at 245–250 eV electron energy. This seems to be related to the spectator resonant Auger stimulated ion desorption. That is, H+ desorption is enhanced due to a two-hole-one-electron state at which the electron is in an anti-bonding C---H* orbital and the two holes can be in a 1π bonding orbital localized on the ---CH3 group. We have also measured similar spectra for other resonant excitation (π*CN, σ*CC, σ*CN). The results are discussed in connection with the bonding/anti-bonding character and localized character of the excited state.  相似文献   

20.
The low index Magnesium hydride surfaces, MgH2(0 0 1) and MgH2(1 1 0), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(1 1 0) surface is more stable than MgH2(0 0 1) surface, which is in good agreement with the experimental observation. The H2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved - they are found to be generally high, due to the thermodynamic stability of the MgH2 system, and are larger for the MgH2(0 0 1) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(1 1 0) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号