首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laterally resolved topography and Contact Potential Difference (CPD) images, acquired during the exposure of clean Si(1 1 1) 7 × 7 to molecular oxygen at room temperature, show a heterogeneous oxidation process, without preference for step edges. The increase of and lateral changes in work function variations show that the CPD variations of the final oxide film are related to the silicon/oxide interface. The molecular Höfer precursor has a pronounced influence on the development of the interface bonding.  相似文献   

2.
The adsorption of molecular oxygen on the c(2 × 8) reconstruction of quenched Si(1 1 1) surfaces has been studied at the atomic scale using scanning tunneling microscopy (STM) at room temperature (RT). It has been found that clean well reconstructed c(2 × 8) adatoms do not react with O2 molecules but that a limited oxidation can start where adatom sites arranged in reconstructed structures are present. Comparison between O2 adsorption on Si(1 1 1)-c(2 × 8) and Si(1 1 1)-7 × 7 reconstructions coexisting on the same quenched silicon surface has been carried out in detail. For each atomic site present on the surface the variation of reacted sites with exposure has been measured. For low O2 exposures, bright and dark oxygen induced sites appear on the Si(1 1 1)-7 × 7, while Si(1 1 1)-c(2 × 8) does not oxidized at all. At high O2 exposures, large oxidation areas have spread on the 7 × 7 reconstruction, preferentially on the faulted halves of the unit cell, and smaller oxidation areas induced by topological defects have grown all around clean un-reacted c(2 × 8) regions.  相似文献   

3.
Crystalline magnesium oxide (MgO) (1 1 1), 20 Å thick, was grown by molecular beam epitaxy (MBE) on hydrogen cleaned hexagonal silicon carbide (6H-SiC). The films were further heated to 740 °C and 650 °C under different oxygen environments in order to simulate processing conditions for subsequent functional oxide growth. The purpose of this study was to determine the effectiveness and stability of crystalline MgO films and the MgO/6H-SiC interface for subsequent heteroepitaxial deposition of multi-component, functional oxides by MBE or pulsed laser deposition processes. The stability of the MgO films and the MgO/6H-SiC interface was found to be dependent on substrate temperature and the presence of atomic oxygen. The MgO films and the MgO/6H-SiC interface are stable at temperatures up to 740 °C at 1.0 × 10−9 Torr for extended periods of time. While at temperatures below 400 °C exposure to the presence of active oxygen for extended periods of time has negligible impact, exposure to the presence of active oxygen for more than 5 min at 650 °C will degrade the MgO/6H-SiC interface. Concurrent etching and interface breakdown mechanisms are hypothesized to explain the observed effects. Further, barium titanate was deposited by MBE on bare 6H-SiC(0 0 0 1) and MgO(1 1 1)/6H-SiC(0 0 0 1) in order to evaluate the effectiveness of the MgO as a heteroepitaxial template layer for perovskite ferroelectrics.  相似文献   

4.
C. Deisl  E. Bertel  A. Goldmann 《Surface science》2006,600(14):2900-2906
The structural changes of Ag films on W(1 1 0) upon coadsorption of oxygen have been studied by scanning tunneling microscopy. The exposure of one monolayer Ag to oxygen leads to a phase separation into an Ag bilayer and patches of O-covered W(1 1 0). The effective Ag island thickness increases linearly with oxygen exposure. For Ag submonolayer-islands the onset of the bilayer formation is delayed, the induction period increases with the available free W area. We conclude that the steps of the transport process are (1) dissociation of oxygen on W and on the Ag islands, (2) site exchange of atomic oxygen with Ag atoms predominantly at the island edges - while on W(1 1 0) the oxygen is immobile, (3) diffusion of the displaced Ag atoms to the island edges where they are incorporated into the monolayer and (4) initiation of Ag bilayer formation, once the W(1 1 0) is saturated with O. This indicates an unexpected activity of the Ag monolayer on W(1 1 0) towards oxygen dissociation. In case of a reversed deposition sequence, where submonolayer quantities of Ag are adsorbed on an oxygen-precovered W(1 1 0) surface, growth of Ag clusters is observed. The distribution of cluster size and cluster height depends critically on the spatial order within the predeposited oxygen overlayer - it is obvious that the oxygen overlayer on the W surface acts as a structured template for preferential Ag nucleation.  相似文献   

5.
The oxygen induced surface structures formed on Mo(1 1 0) by oxygen exposure at 1300 K in UHV has been studied by scanning tunneling microscopy (STM). Two kinds of oxygen-adsorbed surface structures are observed. One consists of one-dimensional rows running along or directions at substrate molybdenum lattices, and another shows more complex structure including discrete arrangement of large protrusions and zig-zag alignments of small protrusions. This complex structure is probably a further oxygen-adsorbed structure than the well-known p(2 × 2) structure of 0.3 ML coverage. On the basis of STM image, an atomic model is proposed, where adsorbed oxygen atoms occupy both long-bridge and the quasi-threefold sites of molybdenum lattice (0.4 ML coverage). This structure is presumed to be a transient state during site-conversion with increase of oxygen exposure.  相似文献   

6.
We report the formation of Si(1 1 3)-3 × 2 facets upon exposing oxygens on the Si(5 5 12) surface at an elevated temperature. These facets are found to form only for a limited range of oxygen exposure and exhibit a well-defined 3 × 2 LEED pattern. We also find the surface electronic state unique only to the facets in the valence band. The spectral feature of these electronic states and the behavior of a (1/3 1/2) LEED spot upon oxygen contents in the facets indicate that the formation is a heterogeneous mixture of the clean Si(1 1 3) facets free of oxygens and other facets containing oxygen atoms.  相似文献   

7.
The oxidation of the W(1 0 0) surface at elevated temperatures has been studied using room temperature STM and LEED. High exposure of the clean surface to O2 at 1500 K followed by flash-annealing to 2300 K in UHV results in the formation of a novel p(3 × 1) reconstruction, which is imaged by STM as a missing-row structure on the surface. Upon further annealing in UHV, this surface develops a floreted LEED pattern characteristic of twinned microdomains of monoclinic WOx, while maintaining the p(3 × 1) missing-row structure. Atomically resolved STM images of this surface show a complex domain structure with single and double W〈0 1 0〉 rows coexisting on the surface in different domains.  相似文献   

8.
We have determined the structure of the 4H-SiC(0 0 0 1)-3 × 3 surface after exposure to small amounts of molecular oxygen at room temperature using surface X-ray diffraction. The 3 × 3 reconstruction remains until at least an exposure of 10,000 L, but the diffracted intensities change, indicating structural changes. Comparison of the Patterson maps of the clean and oxidized surface shows that the main changes occur at the Si tetramer on top of the 3 × 3 surface. Atomic positions for several models were fitted to the experimental data. A model in which oxygen atoms are inserted into the Si tetramer gives the best fit to the experimental data. The best-fit atomic positions agree well with those obtained using density functional calculations.  相似文献   

9.
A para-sexiphenyl monolayer of near up-right standing molecules (nominal thickness of 30 Å) is investigated in-situ by X-ray diffraction using synchrotron radiation and ex-situ by atomic force microscopy. A terrace like morphology is observed, the step height between the terraces is approximately one molecular length. The monolayer terraces, larger than 20 μm in size, are extended along the [0 0 1] direction of the TiO2(1 1 0) substrate i.e. along the Ti-O rows of the reconstructed substrate surface. The structure of the monolayer and its epitaxial relationship to the substrate is determined by grazing incidence X-ray diffraction. Extremely sharp diffraction peaks reveal high crystalline order within the monolayer, which was found to have the bulk structure of sexiphenyl. The monolayer terraces are epitaxially oriented with the (0 0 1) plane parallel to the substrate surface (out-of-plane order). Four epitaxial relationships are observed. This in-plane alignment is determined by the arrangement of the terminal phenyl rings of the sexiphenyl molecules parallel to the oxygen rows of the substrate.  相似文献   

10.
The oxidation of graphene layer on Ru(0 0 0 1) has been investigated by means of scanning tunneling microscopy. Graphene overlayer can be formed by decomposing ethyne on Ru(0 0 0 1) at a temperature of about 1000 K. The lattice mismatch between the graphene overlayer and the substrate causes a moiré pattern with a superstructure in a periodicity of about 30 Å. The oxidation of graphene/Ru(0 0 0 1) was performed by exposure the sample to O2 gas at 823 K. The results showed that, at the initial stage, the oxygen intercalation between the graphene and the Ru(0 0 0 1) substrate takes place at step edges, and extends on the lower steps. The oxygen intercalation decouples the graphene layer from the Ru(0 0 0 1) substrate. More oxygen intercalation yields wrinkled bumps on the graphene surface. The oxidation of graphene, or the removal of carbon atoms can be attributed to a process of the combination of the carbon atoms with atomic oxygen to form volatile reaction products. Finally, the Ru(0 0 0 1)-(2 × 1)O phase was observed after the graphene layer is fully removed by oxidation.  相似文献   

11.
Plateaus in water adsorption isotherms on hydroxylated BeO surfaces suggest significant differences between the hydroxylated (1 0 0) and (0 0 1) surface structures and reactivities. Density functional theory structures and energies clarify these differences. Using relaxed surface energies, a Wulff construction yields a prism crystal shape exposing long (1 0 0) sides and much smaller (0 0 1) faces. This is consistent with the BeO prisms observed when beryllium metal is oxidized. A water oxygen atom binds to a single surface beryllium ion in the preferred adsorption geometry on either surface. The water oxygen/beryllium bonding is stronger on the surface with greater beryllium atom exposure, namely the less-stable (0 0 1) surface. Water/beryllium coordination facilitates water dissociation. On the (0 0 1) surface, the dissociation products are a hydroxide bridging two beryllium ions and a metal-coordinated hydride with some surface charge depletion. On the (1 0 0) surface, water dissociates into a hydroxide ligating a Be atom and a proton coordinated to a surface oxygen but the lowest energy water state on the (1 0 0) surface is the undissociated metal-coordinated water. The (1 0 0) fully hydroxylated surface structure has a hydrogen bonding network which facilitates rapid proton shuffling within the network. The corresponding (0 0 1) hydroxylated surface is fairly open and lacks internal hydrogen bonding. This supports previous experimental interpretations of the step in water adsorption isotherms. Further, when the (1 0 0) surface is heated to 1000 K, hydroxides and protons associate and water desorbs. The more open (0 0 1) hydroxylated surface is stable at 1000 K. This is consistent with the experimental disappearance of the isotherm step when heating to 973 K.  相似文献   

12.
Morphology of high-vacuum deposited rubrene thin films on the annealed (0 0 0 1) vicinal sapphire surfaces was studied by atomic force microscopy in non-contact mode. Atomic force microscopy images of rubrene thin films indicate that a regular array of steps on the sapphire surface acts as a template for the growth of the arrays of rubrene nanosize wires. To further demonstrate that morphological features of a substrate are crucial in determining the morphology of rubrene layers we have grown rubrene on the sapphire surfaces that were characterized by the terrace-and-step morphology with islands. We have found preferential nucleation of rubrene molecules at the intersection between a terrace and a step, as well as around the islands located on terraces.  相似文献   

13.
M. Busch  M. Gruyters  H. Winter 《Surface science》2006,600(13):2778-2784
The growth, structure, and morphology of ultrathin iron oxide layers formed on a Fe(1 1 0) single crystal surface are investigated by Auger electron spectroscopy, low energy electron diffraction, and grazing ion scattering. For Fe oxidation by atomic instead of molecular oxygen, the gas exposure can be reduced by almost two orders of magnitude because surface sticking and dissociation are not limiting the growth process. A well-ordered FeO(1 1 1) film with low defect density is only obtained with atomic oxygen. Compared to the bulk, the FeO lattice is laterally compressed by about 5-6% resulting in an in-plane oxygen (Fe) nearest-neighbor distance of 2.87 Å. Independent of the preparation method, long-range structural order is poor if the oxide film thickness is increased to 3-5 layers. This is attributed to the relatively large lattice mismatch between FeO(1 1 1) and Fe(1 1 0).  相似文献   

14.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

15.
The potential-induced (1 × 1) → “hex” transition on Au(1 0 0) electrodes in 0.01 M Na2SO4 + 1 mM HCl was studied by in situ scanning tunneling microscopy at high time resolution (Video-STM). According to these observations the elementary units of the “hex” surface reconstruction, hexagonally-ordered strings in the Au surface layer, are highly dynamic nanoscale objects. Isolated “hex” strings exhibit dynamic fluctuations in structure and position on the millisecond timescale. These fluctuations exceed the mobility of multistring “hex” domains by several orders of magnitude and can be explained by collective dynamic processes within the strings. Furthermore, the observations reveal a novel 1D mass transport mechanism along the strings, details on the nucleation and growth of “hex” strings and complex string restructuring processes, facilitating “hex” domain ripening.  相似文献   

16.
Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H2O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H2O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.  相似文献   

17.
The titanium dioxide rutile (0 1 1) (equivalent to (1 0 1)) surface reconstructs to a stable (2 × 1) structure upon sputtering and annealing in ultrahigh vacuum. A previously proposed model (T.J. Beck, A. Klust, M. Batzill, U. Diebold, C. Di Valentin, A. Selloni, Phys. Rev. Lett. 93 (2004) 036104/1) containing onefold coordinated oxygen atoms (titanyl groups, TiO) is supported by Scanning Tunneling Microscopy (STM) measurements. These TiO sites are imaged bright in empty-states STM. A few percent of these terminal oxygen atoms are missing at vacuum-annealed surfaces of bulk-reduced samples. These O vacancies are imaged as dark spots. Their number density depends on the reduction state of the bulk. Double vacancies are the most commonly observed defect configuration; single vacancies and vacancies involving several O atoms are present as well. Formation of oxygen vacancies can be suppressed by annealing a sputtered surface first in vacuum and then in oxygen; annealing a sputtered surface in oxygen results in surface restructuring and a (3 × 1) phase. Anti-phase domain boundaries in the (2 × 1) structure are active adsorption sites. Segregation of calcium impurities from the bulk results in an ordered overlayer that exhibits domains with a centered (2 × 1) periodicity in STM.  相似文献   

18.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here.  相似文献   

19.
The initial stages of oxidation of the In-rich InAs(0 0 1)-(4 × 2)/c(8 × 2) surface by molecular oxygen (O2) were studied using scanning tunneling microscopy (STM) and density functional theory (DFT). It was shown that the O2 dissociatively chemisorbs along the rows in the [1 1 0] direction on the InAs surface either by displacing the row-edge As atoms or by inserting between In atoms on the rows. The dissociative chemisorption is consistent with being autocatalytic: there is a high tendency to form oxygen chemisorption sites which grow in length along the rows in the [1 1 0] direction at preexisting oxygen chemisorption sites. The most common site size is about 21-24 Å in length at ∼25% ML coverage, representing 2-3 unit cell lengths in the [1 1 0] direction (the length of ∼5-6 In atoms on the row). The autocatalysis was confirmed by modeling the site distribution as non-Poisson. The autocatalysis and the low sticking probability (∼10−4) of O2 on the InAs(0 0 1)-(4 × 2)/c(8 × 2) are consistent with activated dissociative chemisorption. The results show that is it critical to protect the InAs surface from oxygen during subsequent atomic layer deposition (ALD) or molecular beam epitaxy (MBE) oxide growth since oxygen will displace As atoms.  相似文献   

20.
Evolution of the (0 0 0 1) α-Al2O3 surface morphology upon annealing was studied using atomic force microscopy. The annealing protocol included temperatures of 1200 and 1500 °C and different time. Vicinal Al2O3 (0 0 0 1) surfaces annealed at 1200 °C exhibit initial localized step coalescence that evolves into terrace-and-step with island morphology that persists for several hours. Annealing at 1500 °C results in initial step coalescence on a global scale, and yields a terrace-and-step morphology with an indication of step bunching after longer annealing times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号