首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J.M.R. Muir  H. Idriss 《Surface science》2009,603(19):2986-2990
The reaction of formamide over the (0 1 1) faceted TiO2(0 0 1) surface has been studied by Temperature Programmed Desorption (TPD) and X-ray Photoelectron Spectroscopy (XPS). Two main reactions were observed: dehydration to HCN and H2O and decomposition to NH3 and CO. The dehydration reaction was found to be three to four times larger than the decomposition at all coverages. Each of these reactions is found to occur in two temperature domains which are dependent upon surface coverage. The low temperature pathway (at about 400 K) is largely insensitive to surface coverage while the high temperature pathway (at about 500 K) shifts to lower temperatures with increasing surface coverage. These two temperature pathways may indicate two adsorption modes of formamide: molecular (via an η1(O) mode of adsorption) and dissociative (via an η2(O,N) mode of adsorption). C1s and N1s XPS scans indicated the presence of multiple species after formamide absorption at 300 K. These occurred at ca. 288.5 eV (-CONH-) and 285 eV (sp3/sp2 C) for the C1s and 400 eV-(NH2), 398 eV (-NH) and 396 eV (N) for the N1s and result from further reaction of formamide with the surface.  相似文献   

2.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

3.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

4.
The variation of the oxygen content, xO, of synthetic fayalite (Fe2SiO4) single crystals was investigated thermogravimetrically at 1130 °C as a function of the oxygen activity, aO2 (= PO2/PO2° ≈ fO2/fO2° with PO2° ≈ fO2° = 1 bar ≈ 1 atm). It was found that xO varies less in fayalite single crystals than in polycrystalline Fe2SiO4 studied earlier. The majority defects are most likely cation vacancies, (VMe2+)″, ferric ions on M-sites, (Fe3+Me2+), and ferric ions on Si-sites, (Fe3+Si4+)′. Furthermore, the diffusion of iron in synthetic olivine single crystals ((FexMg1 − x)2SiO4) was studied at 1130 °C as a function of orientation, oxygen activity, and cationic composition. The observed oxygen activity dependencies suggest that cations move via different types of cation vacancies, most likely isolated vacancies, (VFe2+)″, and possibly neutral associates, {2(Fe3+Me2+) ⋅ (VMe2+)′ ? ′}x, the latter being minority defects. In addition, the electrical conductivity, σ, of fayalite single crystals was investigated as a function of orientation and oxygen activity within the stability field of fayalite at 1130 °C. The observed oxygen activity dependencies are compatible with (VMe2+)′ ? ′, (Fe3+Me2+), and (Fe3+Si4+)′ being the majority point defects at high aO2 and with h and e′ as the majority defects at low aO2. The electrical conduction in fayalite is governed by contributions of electrons and holes. This extended point defect model for fayalite is also compatible with data for the variation of the oxygen content and for the iron tracer diffusion.  相似文献   

5.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

6.
Geometries and stabilities of the linear aluminum-bearing carbon chains AlC2nH (n = 1-5) in their ground states have been explored by the DFT-B3LYP and RCCSD(T) methods. Structures of the X1Σ+ and 11Π electronic states have also been optimized by the CASSCF approach. The studies indicate that these species have single-triple bond alternate pattern, AlCCCC?CCH, and the electronic excitation from X1Σ+ to 11Π leads to the shortening of the AlC bonds. The vertical excitation energies of the 11Π ← X1Σ+ and 21Π ← X1Σ+ transitions for AlC2nH (n = 1-5) have been investigated by the CASPT2, EOM-CCSD, and TD-B3LYP levels of theory with the cc-pVTZ basis set, respectively. CASPT2-predicted 11Π ← X1Σ+ transition energies are 3.57, 3.44, 3.33, 3.26, and 3.21 eV, respectively. For AlC2H, our estimate agrees very well with the experimental value of 3.57 eV. In addition, the AlC bond dissociation energies and the exponential-decay curves for these vertical excitation energies are also discussed.  相似文献   

7.
K. Ozawa  Y. Oba 《Surface science》2009,603(13):2163-1659
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV.  相似文献   

8.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs.  相似文献   

9.
The surface chemistry and binding of dl-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO2(1 1 0) single crystal surfaces. TiO2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that dl-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO2 surface. On TiO2(1 1 0) surfaces reduced by Ar+ sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.  相似文献   

10.
DFT calculations are employed to bulk and surface properties of spinel oxide Co3O4. The bulk magnetic structure is calculated to be antiferromagnetic, with a Co2+ moment of 2.631 μB in the antiferromagnetic state. There are three predicted electron transitions O(2p) → Co2+(t2g) of 2.2 eV, O(2p) → Co3+(eg) of 2.9 eV and Co3+(t2g) → Co2+(t2g) of 3.3 eV, and the former two transitions are close to the corresponding experimental values 2.8 and 2.4 eV. The naturally occurring Co3O4 (1 1 0) and (1 1 1) surfaces were considered for surface calculations. For ideal Co3O4 (1 1 0) surfaces, the surface relaxations are not significant, while for ideal Co3O4 (1 1 1) surfaces the relaxation of Co2+ cations in the tetrahedral sites is drastic, which agrees with the experiment observation. The stability over different oxygen environments for possible ideal and defect surface terminations were explored.  相似文献   

11.
To investigate solvent effects, CO and H2 adsorption on Cu2O (1 1 1) surface in vacuum, liquid paraffin, methanol and water are studied by using density functional theory (DFT) combined with the conductor-like solvent model (COSMO). When H2 and CO adsorb on Cucus of Cu2O (1 1 1) surface, solvent effects can improve CO and H2 activation. The H-H bond increases with dielectric constant increasing as H2 adsorption on Osuf of Cu2O (1 1 1) surface, and the H-H bond breaks in methanol and water. It is also found that both the structural parameters and Mulliken charges are very sensitive to the COSMO solvent model. In summary, the solvent effects have obvious influence on the clean surface of Cu2O (1 1 1) and the adsorptive behavior.  相似文献   

12.
By means of cluster models coupled with density functional theory, we have studied the hydroboration of the Ge(1 0 0)-2 × 1 surface with BH3. It was found that the Ge(1 0 0) surface exhibits rather different surface reactivity toward the dissociative adsorption of BH3 compared to the C(1 0 0) and Si(1 0 0) surfaces. The strong interaction still exists between the as-formed BH2 and H adspeices although the dissociative adsorption of BH3 on the Ge(1 0 0) surface occurs readily, which is in distinct contrast to that on the C(1 0 0) and Si(1 0 0) surfaces. This can be understood by the electrophilic nature of the down Ge atom, which makes it unfavourable to form a GeH bond with the dissociating proton-like hydrogen. Alternatively, it can be attributed to the weak proton affinity of the Ge(1 0 0) surface. Nevertheless, the overall dissociative adsorption of BH3 on group IV semiconductor surfaces is favourable both thermodynamically and kinetically, suggesting the interesting analogy and similar diversity chemistry of solid surface in the same group.  相似文献   

13.
In the present work the ASED-MO method is applied to study the adsorption of cyclopentadienyl anion on a Ni(1 1 1) surface. The adsorption with the centre of the aromatic ring placed above the hollow position has been identified to be energetically the most favourable. The aromatic ring remains almost flat, the H atoms are tilted 17° away from the metal surface. We modelled the metal surface by a two-dimensional slab of finite thickness, with an overlayer of c-C5H5, one c-C5H5 per nine surface Ni atoms. The c-C5H5 molecule is attached to the surface with its five C atoms bonding mainly with three Ni atoms. The NiNi bond in the underlying surface and the CC bonds of c-C5H5 are weakened upon adsorption. We found that the band of Ni 5dz2 orbitals plays an important role in the bonding between c-C5H5 and the surface, as do the Ni 6s and 6pz bands.  相似文献   

14.
An effective way to prepare atomically-ordered rutile TiO2(1 1 0) surfaces that have distinct step and terrace structures suitable for oxide thin film deposition is demonstrated. Only a two-step procedure, consisting of 20% HF etching and UHV-annealing at 1100 °C, was required to yield a clean (1 × 1) structure with step and terrace structures. Investigation of the surface using scanning tunneling microscopy, low-energy electron diffraction, and Auger electron spectroscopy reveals that carbon contamination is removed at around 800 °C, and straight steps with clear terraces appear at around 1000 °C.  相似文献   

15.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

16.
S.D. Sartale 《Surface science》2006,600(22):4978-4985
The growth of Pt nanoclusters on thin film Al2O3 grown on NiAl(1 0 0) was studied by using scanning tunneling microscopy (STM). The samples were prepared by vapor depositing various amounts of Pt onto the Al2O3/NiAl(1 0 0) at different substrate temperatures in ultra high vacuum (UHV). The STM images show that sizeable Pt nanoclusters grow solely on crystalline Al2O3 surface. These Pt clusters appear to be randomly distributed and only a few form evident alignment patterns, contrasting with Co clusters that are highly aligned on the crystalline Al2O3. The size distributions of these Pt clusters are rather broader than those of the Co clusters on the same surface and the sizes are evidently smaller. With increasing coverage or deposition temperature, the number of larger clusters is enhanced, while the size of the majority number of the clusters remains around the same (0.4 nm as height and 2.25 nm as diameter), which differs drastically from the Pt clusters on γ-Al2O3/NiAl(1 1 0) observed earlier. These Pt cluster growth features are mostly attributed to smaller diffusion length and ease to form stable nucleus, arising from strong Pt-Pt and Pt-oxide interactions and the peculiar protrusion structures on the ordered Al2O3/NiAl(1 0 0). The thermal stability of Pt nanoclusters was also examined. The cluster density decreased monotonically with annealing temperature up to 1000 K at the expense of smaller clusters but coalescence is not observed.  相似文献   

17.
We have measured photoluminescence (PL) spectrum of (1) thermal-annealed SrTiO3/Si thin film and undoped SrTiO3 single crystal; (2) SrTiO3 single crystal irradiated by high energy (3 MeV) proton, deuterium, and He ion beams and (3) SrTiO3 single crystal irradiated by low energy (60 keV) H+ and C ions. Two PL emissions are induced in (1) and (2) at visible frequencies 3 and 2.45 eV, while another PL peak is induced at 2 eV in (3). When compared with our previous PL experiments on high-temperature annealed SrTiO3/SiO2/Si thin film and 3 MeV proton (H+) irradiated STO single crystal, these results confirm that the three PL emissions with blue (3 eV), green (2.45 eV), and red-orange (2 eV) frequencies originate indeed from SrTiO3. These primary-color PL effect induced at room-temperature makes STO a strong candidate material for future oxide-based optoelectronic application.  相似文献   

18.
n-Si(1 1 1) crystalline electrode was modified by carboxyl acid groups and sulfonic groups. The flat band potential (Ufb), relation between flat band potential and the carbon numbers to the modified samples and relation between photocurrent density and potential of the modified electrodes were studied. ATR-IR spectra and XPS analysis show that the organic compounds were connected to n-Si(1 1 1) wafer by SiC bond. Calculation indicates that the surface modification ratio increased with the carbon number of organic groups decreased. Mott-Schottky plots gives the flat band potential of the samples to shift to negative positions with the carbon number decreased in both of the two different systems and the flat band potential of the sample with the group of (CH2)3SO3H reaches to −0.82 V, which is more negative than reported, and the flat band potential of all the samples in this paper are more negative than the sample with methyl group [B. Ashish, N.S. Lewis, J. Phys. Chem. B 102 (1998) 1067; S. Takabayashi, M. Ohashi, K. Mashima, Y. Liu, S. Yamazaki, Y. Nakato, Langmuir 21 (2005) 8832]. The photocurrent and photovoltage of the modifications are stable enough under solar illumination for a long time.  相似文献   

19.
Thin films of barium strontium titanate (Ba1−xSrx TiO3 (BSTO)) have been used in coupled microstrip phase shifters (CMPS) for possible insertion in satellite and wireless communication platforms primarily because of their high dielectric constant, low loss, large tunability, and good structural stability. In an attempt to improve the figure of merit K (phase shift °/dB of loss) of phase shifters, modification of the metal/BSTO interface of these devices has been done through surface modification of the BSTO layer using a self-assembled monolayer approach. The impact of this nanotechnology promises to reduce RF losses by improving the quality of the metal/BSTO interface. In this study, compounds such as 3-mercaptopropyltrimethoxysilane (MPS), 16-mercaptohexadecanois acid (MHDA) and 3-mercaptopropionic acid (MPA) were used to form the self-assembled monolayers on the BSTO surface. As a result of the previous modification, chemical derivatization of the self-assembled monolayers was done in order to increase the chain length. Chemical derivatization was done using 3-aminopropyltrimethoxysilane (APS) and 16-mercaptohexadecanoic acid. Surface chemical analysis was done to reveal the composition of the derivatization via X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FT-IR). Low and high frequencies measurements of phase shifters were done in order measure the performance of these devices for insertion in antennas. X-ray photoelectron spectroscopy characterization of modified BSTO thin films with MPS showed a binding energy peak at 162.9 eV, indicative of a possible SO interaction: sulfur of the mercapto compound, MPS, used to modify the surface with the oxygen site of the BSTO thin film. This interaction is at higher binding energies compared with the thiolate interaction. This behavior is observed with the other mercapto compounds such as: MHDA and MPA. An FT-IR analysis present a band at 780 cm−1, which is characteristic of an OSC stretching and reveals the modification of the BSTO thin film by the coupling of the O of the BSTO with the S of the mercapto compound. All the modification using mercapto compounds is through sulfur to the BSTO thin film. MHDA SAM on BSTO thin film was chemically derivatized using APS shown by XPS and FT-IR. The SAMs modified phase shifters showed an improvement in performance with respect to those phase shifters fabricated with standard methods.  相似文献   

20.
Density functional theory has been employed to investigate the adsorption and the dissociation of an N2O at different sites on perfect and defective Cu2O(1 1 1) surfaces. The calculations are performed on periodic systems using slab model. The Lewis acid site, CuCUS, and Lewis base site, OSUF are considered for adsorption. Adsorption energies and the energies of the dissociation reaction N2O → N2 + O(s) at different sites are calculated. The calculations show that adsorption of N2O is more favorable on CuCUS adsorption site energetically. CuCUS site exhibits a very high activity. The CuCUS-N2O reaction is exothermic with a reaction energy of 77.45 kJ mol−1 and an activation energy of 88.82 kJ mol−1, whereas the OSUF-N2O reaction is endothermic with a reaction energy of 205.21 kJ mol−1 and an activation energy of 256.19 kJ mol−1. The calculations for defective surface indicate that O vacancy cannot obviously improve the catalytic activity of Cu2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号