首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《印度化学会志》2021,98(7):100092
In this study, the dyeing properties of cellulose fabric and wool yarn were investigated using Prunus persica (Peach) leaf extracts. For this concept, the cotton fabrics and wool yarns were subjected to pre–, meta– and post– mordanting processes in the presence of FeSO4, CuSO4 and AlK(SO4)2 mordants. The studies were carried out using medium pH. Color analyses of the dyed samples were done and the results were evaluated in terms of wash, rubbing and light fastness values. The color codes were determined with Pantone Color Quide, and K/S and L1 a1 b1 values were detected with color measurement spectrophotometer, and also washing–, crocking– fastness levels were evaluated using gray scale. As a result, it was detected that wool yarns exhibited better dyeing potential than cotton fabrics and highest color strength values were obtained using pre–mordanting method. For wool yarns, high color strength were achieved in the presence of AlK(SO4)2 mordant.  相似文献   

2.
Photoyellowing of wool is a serious problem for the wool industry. This study assessed the role of photocatalytic nanocrystalline titanium dioxide (P-25) as a potential antagonist or catalyst in the photoyellowing of wool. Untreated, bleached and bleached and fluorescent-whitened wool slivers were processed into fine wool powders for the purpose of even and intimate mixing with the TiO2 nanoparticles in the solid state. Pure wool and wool/TiO2 mixtures were then compressed into solid discs for a photoyellowing study under simulated sunlight and under UVB and UVC radiations. Yellowness and photo-induced chemiluminescence (PICL) measurements showed that nanocrystalline TiO2 could effectively reduce the rate of photoyellowing by inhibiting free radical generation in doped wool, and that a higher concentration of TiO2 contributed to a lower rate of photooxidation and reduced photoyellowing. Hence nanocrystalline TiO2 acts primarily as a UV absorber on wool in dry conditions and not as a photocatalyst.  相似文献   

3.
In this study, the trend of Volatile Organic Compounds (VOCs) in dietary fiber samples from the winter melon (Cucumis Melo var. Inodorus, Yellow Canary type) were investigated. This foodstuff, obtained as a by-product of agri-food production, has gained increasing attention and is characterized by many bioactive components and a high dietary-fiber content. As regards fiber, it is poorly colored, but it may be whitened by applying a bleaching treatment with H2O2. The result is a fibrous material for specific applications in food manufacturing, for example, as a corrector for some functional and technological properties. This treatment is healthy and safe for consumers and widely applied in industrial food processes. In this study, a method based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS) was applied for the characterization of the aromatic profile of the dried raw materials. Furthermore, VOC variation was investigated as function of the bleaching treatment with H2O2. The bleached samples were also analyzed after a long storage period (24 months), to assess their stability over time. As a result, the VOC fraction of the fresh raw fiber showed nine classes of analytes; these were restricted to seven for the bleached fiber at t0 time, and further reduced to four classes at the age of 24 months. Alcohols were the main group detected in the fresh raw sample (33.8 % of the total chromatogram area), with 2,3-butanediol isomers as the main compounds. These analytes decreased with time. An opposite trend was observed for the acids (9.7% at t0), which increased with time and became the most important class in the 24-month aged and bleached sample (57.3%).  相似文献   

4.

Against the practical context of thermal straightening, hair samples were obtained with a chemical (bleaching) as well as a cumulative thermal history (0–800 s, 200 °C). On these samples, tensile testing and DSC analysis, both in the wet state, were conducted to obtain the elastic moduli Ew as well as denaturation temperatures TD and enthalpies ΔHD. 3D plots show overall linearity for the relationships between the parameters for natural hair. For bleached hair, pronounced nonlinearities develop beyond 300 s of thermal treatment. At this stage, TD as well as Ew approaches limiting values, consistent with the state of a highly cross-linked, thermoset polymer. 2D projections are used to investigate the correlations between pairs of parameters. The results show that bleaching imparts a specific sensitivity for thermal damage, namely, to the matrix proteins, which more readily than the intermediate filaments (IF) turn into a thermoset. Overall, correlations between parameters hold well prior to the thermoset range. It is thus suggested that tensile testing to determine the elastic modulus and DSC come to consistent and equivalent results, at least, for the current experimental context. However, while Ew combines contributions of IFs and matrix, DSC differentiates the specific property changes of these components.

  相似文献   

5.
Cellulose fibres obtained from sugarcane bagasse were submitted to a purification process, which consisted of an acid hydrolysis for elimination of the major part of lignin and hemicellulose. This was followed by a delignification process carried out in two steps to yield crude cellulose (CCell) fibres in the first one and with a subsequent bleaching in order to yield bleached cellulose fibres (BCell). Composites of crude and bleached cellulose fibres with hydrous niobium phosphate, cell/NbOPO4·nH2O, were subsequently synthesized. Scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction characterization of the obtained materials showed CCell/NbOPO4·nH2O and BCell/NbOPO4·nH2O are real composites. The nature of the cellulose (CCell or BCell) has an important role on the composites obtained, namely on the niobium salt composition at the composite surface. The synthesis of membranes of both cellulose and mixed matrix cellulose/NbOPO4·nH2O was only possible when the bleached cellulose was used.  相似文献   

6.
Currently, bleached eucalypt pulps are largely used for printing and writing (P&W) and sanitary (tissue) paper grades. Among the many pulp quality requirements for P&W and tissue paper production the xylan content is one of the most significant. For P&W papers, increasing xylans improve pulp refinability and strength properties but negatively affect bulk and drainability. For tissue paper, xylans are purportedly advantageous during paper drying in the Yankee cylinder but negatively affect paper bulk and may increase dusting during paper manufacture. On the other hand, bleachability is a very important parameter for both P&W and tissue grade pulps since bleaching cost is the second most significant in eucalypt bleached kraft pulp production. The aim of this study was evaluating the influence of eucalyptus pulp xylan content on its bleachability, refinability and drainability. A sample of industrial unbleached eucalyptus kraft pulp containing 15.6?% xylans was treated with various alkali charges at room temperature in order to obtain materials with different xylan contents. The pulps were bleached to 90 % ISO brightness with the O–DHT–(EP)–D sequence and evaluated for their refinability and drainability. By increasing the alkali concentration in the range of 10–70 g/L pulps of 14.5–5.9 % xylans were produced with no significant impact on cellulose crystallinity. The decrease of xylan content significantly decreased pulp bleaching chemical demand, water retention value and refinability and increased pulp drainability.  相似文献   

7.
Production of high performance conductive textile yarn fibers for different electronic applications has become a prominent area of many research groups throughout the world. We have used oxidative chemical vapor deposition (OCVD) technique to coat flexible and high strength polyester yarns with conjugated polymer, poly(3,4‐ethylenedioxythiophene) (PEDOT) in presence of ferric (III) chloride (FeCl3) oxidant. OCVD is an efficient solvent free technique used to get uniform, thin, and highly conductive polymer layers on different substrates. In this paper, PEDOT‐coated polyester (PET) yarns were prepared under specific reaction conditions, and the electrical, mechanical and thermal properties were compared to previously studied PEDOT‐coated viscose yarns. Scanning electron microscopy (SEM) and FT‐IR analysis revealed that polymerization of PEDOT on the surface of the polyester yarns has been taken place successfully and structural analysis showed that PEDOT has strong interactions with viscose yarns as compared to PET yarns. The voltage–current (VI) characteristics showed that PET yarns are more conductive than PEDOT‐coated viscose yarns. The variation in the conductivity of PEDOT‐coated yarns and the heat generation properties during the flow of current through coated yarns for longer period of time, was studied by time–current (tI) characteristics. Thermogravimeteric analysis (TGA) was employed to investigate the thermal properties and the amount of PEDOT in PEDOT‐coated PET yarns compared to PEDOT‐coated viscose. The effect of PEDOT coating and ferric (III) chloride concentration on the mechanical properties of coated yarns was evaluated by tensile testing. The obtained PEDOT‐coated conductive polyester yarns could be used in smart clothing for medical and military applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This study has been carried out to synthesize nano ZnO on wool fabric and also to investigate influences of nano photo reactors on wool fabric characteristics. Zinc acetate has been used as a precursor and the synthesis process has been done in water and water/ethanol media. The treated wool fabrics were heated at 80°C for 10 h to dehydrate Zn(OH)2 obtaining ZnO. The fabric samples were then subjected to daylight for 7 days to examine the influence of nano ZnO photo reactor on the fabric properties. SEM images revealed the embedding of ZnO nanoparticles on the fabrics and X‐ray diffraction verified the nanoparticles composition. The Yellowness Index (YI) of the fabrics was measured with Color Eye XTH that has been reduced with increasing pH, Zn(CH3COO)2 concentration, ethanol and heating. The lower water contact angle and time of water absorption confirmed higher hydrophilic properties of the treated fabrics. Interestingly, a higher tensile strength obtained on the wool fabrics proved the interaction of ZnO with protein chains of wool, which was verified through lower alkali solubility of treated fabric with nano ZnO and confirmed more benefits of the in situ synthesis process.  相似文献   

9.
This research has explored the effect of laccase (Denilite ІІ S) on the physical properties of the wool fabric and confirms the anti-felting of wool. In the experiment, laccase was applied to a wool fabric and different characteristics including weight loss, strength, alkali solubility, felting shrinkage, water drop absorption, and dye ability with madder were studied. The surface morphology of the wool fabrics was also observed by scanning electron microscope. The results indicated that the wool fabric treated with laccase has a higher water drop absorption, lower felting shrinkage, and lower values of a * and b *. Treatment of a wool fabric with 10% or lower percentage of laccase reduced the fabric weight but increased the tensile strength. However, using higher concentration of laccase reduced fabric weight and tensile strength. The dyeing of laccase pre-treated wool fabric with madder indicated a lower lightness.  相似文献   

10.
Organochlorine, obtained by extraction with hexane–acetone mixture (3?:?1) of fillets of white sucker (Catostomus commersoni) sampled downstream of pulp mills and in a reference river, was characterized by gel-permeation chromatography, transesterification, neutron activation analysis, and gas chromatography with halogen-sensitive detection. It was found that over 78% of the extractable organochlorine (EOCl) is of relatively high molecular weight (>~350). Chlorinated fatty acids account for 43–80% of EOCl in the high-molecular-weight portion, while chlorobenzenes, chlorinated pesticides, and polychlorinated biphenyls account for 4–55% of EOCl in the low-molecular-weight portion. Though undetectable in reference fish, three particular chlorinated fatty acids, i.e. threo-5,6-dichlorotetradecanoic, threo-7,8-dichlorohexadecanoic and threo-9,10-dichlorooctadecanoic acids, are characteristic of EOCl from fish collected downstream of bleached kraft pulp mills using chlorine-based bleaching, representing about 30% of total EOCl, of which threo-5,6-dichlorotetradecanoic acid alone accounts for 60–70%. It is thus evident that, among chlorinated compounds discharged from bleached kraft pulp mills, threo-9,10-dichlorooctadecanoic acid, presumably generated in chlorine-based bleaching processes, is the most bio-accumulative in fish and can be biodegraded by fish into dichlorohexadecanoic and dichlorotetradecanoic acids, presumably via β-oxidative metabolism. These three compounds were also identified in suspended solids isolated from biologically treated final effluent discharged from a bleached pulp mill using 50% ClO2 substitution, thus confirming the effluent-related source for downstream fish. The finding also suggests that β-oxidation of dichlorooctadecanoic acid may also be operative in micro-organisms.  相似文献   

11.
Thin films of tungsten trioxide (WO3) for electrochromic application were synthesized by potentiostatic method by using a peroxytungstic acid as a solution precursor. The morphology of the films with and without postthermal annealing was analyzed by atomic force microscopy. When they were in contact with the liquid electrolyte (LiI in propylene carbonate, PC) and under alternatively applied negative (−1.5 V) and positive (+1.0 V) potentials, the transient optical transmittance modulations at wavelength of 650 nm of the as-deposited and 60 °C annealed WO3 samples were higher than that of 100 °C annealed WO3 films, and the switching times between the colored and bleached states were related to the surface morphology of the WO3 films. In polymeric gel electrolyte (LiI and polymethyl methacrylate in PC) devices, longer time was required for complete coloration as well as bleaching process compared with the liquid one. A parametric analysis was made for each of the transient optical transmittance curves of WO3-based electrochromic devices to extract the values of the response time in coloration (reduction) and bleaching (oxidation) processes. It concludes that the coloration process was determined by the exchange of current density at the electrolyte–WO3 interface and a possible inhomogeneous interfacial potential for ion intercalation retards the effective coloration time. The bleaching process seems to be controlled by the space charge-limited lithium ion diffusion in WO3 electrode and the ionic conductivity of the electrolyte as well.  相似文献   

12.
The impact behaviour of self-reinforced polypropylene (PP) composites was studied. α and β polymorphs of isotactic PP homopolymer and random copolymer (with ethylene) were used for matrix materials, whereas the reinforcement was a fabric woven from highly stretched split PP yarns. The composite sheets were produced by the film-stacking method and consolidated by hot pressing at 5 and 15 °C above the melting temperature (Tm) of the matrix-giving PP grade. The composite sheets were subjected to static tensile, dynamic falling weight impact and impact tensile tests at room temperature. Dynamic mechanical thermal analysis (DMTA) was also performed on the related composites and their constituents. The results indicated that the β-modification of the PP homopolymer is more straightforward than that of the PP copolymer. Stiffness and strength usually increased while the toughness (tensile impact strength, perforation impact energy) decreased with increasing temperature of consolidation. This was assigned to differences in the failure mode based on fractographic results.  相似文献   

13.

This study focused on the fabrication of poly(n-butyl methacrylate) (PBMA) nanocomposites with various concentrations of cerium-doped titanium dioxide (Ce–TiO2) nanoparticles via in situ polymerization technique. The structural characterization and the material properties of all the composites were analyzed by UV–visible, FTIR, XRD, SEM, DSC, TG, and tensile strength measurements. The UV–visible and FTIR studies confirmed the effective inclusion of Ce–TiO2 nanoparticles into the PBMA matrix. The change in amorphous morphology of PBMA to a crystalline structure was observed from the XRD pattern. The SEM morphology revealed the attachment of nanoparticles in the polymer matrix. The inclusion of Ce–TiO2 nanoparticles enhanced the glass transition temperature, and thermal stability of the PBMA matrix was revealed from DSC and TG, respectively. The tensile strength of PBMA was greatly enhanced by the addition of Ce–TiO2 nanoparticles. The AC conductivity, dielectric constant, and dielectric loss studies were also performed in the frequency range 102–106 Hz, and it was observed that addition of Ce–TiO2 nanoparticles greatly enhanced the electrical properties of PBMA. The change in dielectric constant with the addition of nanoparticles was correlated with a theoretical modeling study. This work also extended to study the role of Ce–TiO2 nanoparticles in the reinforcing mechanism of the nanocomposite by comparing the actual tensile strength of the composite with different theoretical modeling. The high dielectric constant and tensile strength of composite are beneficial in designing lightweight and highly efficient nanoelectronic materials based on the family of polybutyl acrylates.

  相似文献   

14.
To reveal the enhancement effect of graphene oxide (GO) in polymer nanofiber yarns, polyacrylonitrile (PAN)/GO nanofibers with different GO content (0.1‐0.5 wt%) were electrospun. The alignment of PAN chains and GO in nanofibers was enhanced by hot stretching of the yarn in dry conditions. The microstructure of the composite nanofiber yarns was investigated through X‐ray diffraction, polarized Fourier transform infrared spectroscopy and transmission electron microscopy. The results demonstrated that the hot stretching above Tg of PAN precursor lead to the increased orientation‐induced crystallization and alignment of PAN chain and GO. The yarn with 0.1 wt% GO and stretched by 4 times its length obtained the highest strength and modules (310.88 ± 24.68 MPa and 7.24 ± 0.55 GPa), which were 600% and 500% higher than those of the as‐electrospun pure PAN yarn. The most promising tensile properties found in hot stretched yarns with low GO content was because the strong interaction occurred between PAN molecules and oxygen‐containing functional groups. Indirect evidence of GO aggregation was also presented, which adversely affected the mechanical properties at higher GO content. Composite nanofiber yarns were sewable and weavable, and could be used as a new generation of composite reinforcement after pyrolysis.  相似文献   

15.
The graft polymerization of methyl methacrylate onto wool, using LiBrK2S2O8 and Na2S2O3H2O2 redox systems as initiators, does not change dramatically the stress-strain behaviour of single fibres even for high graft yields. Variations in tensile properties are essentially due to an important radial swelling effect of the deposited polymer accompanied by a moderate increase of internal viscosity and, in the case of Na2S2O3H2O2 initiation, to interference from oxidative processes.  相似文献   

16.
Electrochromic hydrated Ni-oxide films were prepared using a dip-coating technique from a nickel sulphate heptahydrate precursor in combination with glycerol, formamide and polyvinyalcohol. In-situ monochromatic (λ=400 nm) spectroelectrochemical measurements using a potential of −0.4 V to 0.8 V in 0.1M LiOH electrolyte revealed that the electrochromic efficiency was 23.5 cm2/C. The observed colouring/bleaching transmittance of a 100 nm thick film changed during potential cycling (20 cycles) by 45%. Ex-situ FT-IR absorption/reflection measurements performed at near-grazing incidence angle conditions (80°) confirmed transformation of as-deposited α-Ni(OH)2 phase to β-Ni(OH)2 at cathodic (bleached state) and β-NiOOH at anodic (coloured state) potentials during extended cycling (200 cycles). Clear evidence of the OH ions insertion and release of SO 4 2− ions from the as-deposited films when soaked (0.5 hour) in 0.1M LiOH are given. These processes are accompanied by the transformation of the residual COO groups originating from the peptisation with glacial acetic acid into CO 3 2− species residing in the films during extensive potential cycling.  相似文献   

17.
A cellulose-PCC composite was synthesised using the CaCl2 reaction with dimethyl carbonate (DMC) under alkaline conditions and in the presence of cellulose fibrils made from highly refined bleached softwood kraft pulp. The results showed that the ash content in the synthesised cellulose-PCC composite increased by increasing the reaction temperature from 25°C to 70°C, the reaction time from 3.5 min to 7.5 min and the cellulose consistency from 0.05 % to 0.1 %. The ratio of calcium carbonate generated to the calcium chloride used initially was increased by increasing the reaction temperature and time. The XRD pattern of the cellulose-PCC composite indicated no modification micro-crystal habit of the deposited CaCO3. The SEM images showed that the cellulose-PCC composite filler had a rhombohedral shape as opposed to the scalenohedral shape of common PCC. The paper filled with the cellulose-PCC composite had much higher bursting and tensile strengths, at a tearing strength similar to common PCC.  相似文献   

18.
The composites containing polycarbonate (PC) and cerium oxide (CeO2) nanoparticles as well as nanoparticles modified with stearic acid (mCeO2) have been prepared using a melt blending method. The composites are studied by using FTIR spectroscopy, differential scanning calorimetry, thermal gravimetric analysis and scanning electron microscopy, and their tensile strength and ultraviolet (UV) resistance are examined. The results indicate that the introduction of CeO2 nanoparticles at 1 wt% can improve the mechanical properties of PC, while a weight ratio that is over 1 wt% can lead to a reduction in the tensile strength. Compared with the PC/CeO2 composites, the PC/mCeO2 composites provide better mechanical properties. Besides, the introduction of CeO2 nanoparticles gives PC promising UV resistance. However, different amounts of CeO2 nanoparticles used provide similar thermal and UV resistance in PC. In a comparison of the PC/CeO2 and PC/mCeO2 composites, there are no apparent differences observed between CeO2 and mCeO2 on improving the UV resistance of PC.  相似文献   

19.
MULTIPLE CHROMOPHORE SPECIES IN PHYTOCHROME*,†,‡   总被引:2,自引:0,他引:2  
Abstract— Buffered aqueous solutions of pure phytochrome, when irradiated at 730 nm, had a main absorption band at about 660 nm and a shoulder or secondary band at 580–600 nm. When irradiated at 660 nm, these absorption bands bleached and a pair of bands at 670 and 725–730 nm appeared. When 660 nm irradiated samples were placed in the dark the 730 nm absorption slowly bleached and the 670 nm absorption band shifted to 660 nm. The kinetics of the bleaching indicated that two populations of PFR existed initially. These two populations decayed by first order kinetics with k's of 4.8 × 10-4 sec-1 and 3.1 × 10--5 sec-1at 25°. While the bleaching of PFR was occumng, the appearance of the 660 nm and 580–600 nm absorption bands characteristic of PR took place. The kinetics of the increase in the 580 and 660 nm absorption bands indicated that it was arising from two populations of reactants by two first order reactions with k's of 6.4 × 10-4 sec-1 and 3.1 × 10-5sec-1 at 25°. When the sodium chloride concentration of the solvent was changed the proportions of the kinetically different populations were altered. In some conditions, especially in the presence of air. reversible but non-reciprocal changes in the four absorption bands were observed. These effects were evident after the lapse of many hours in the dark. When native phytochrome was treated with sodium dodecyl sulfate all absorption bands but the 580–600 nm absorption band were bleached and photoreversibility was lost. When native phytochrome was treated with glutaraldehyde, the 730 nm absorption band was bleached but photoreversibility was retained. It was concluded that at least four species of chromophore exist in phytochrome with absorption maxima at 580, 660 , 670 and 730 nm. Each chromophore is capable of being bleached by appropriate irradiation or in the dark by chemical reactions rather than photochemical reactions. The reactions are probably coupled redox reactions between the 580–660 nm pair and the 670–730 pair of chromophores. Discrepancies observed in the reciprocity of the absorption changes in these paired bands are probably due to various degrees of uncoupling and secondarily to the redox potential of the solvent when such uncoupling occurs.  相似文献   

20.

Wound healing is a complex process which requires an appropriate environment for quick healing. Recently, biodegradable hydrogel-based wound dressings have been seen to have high potential owing to their biodegradability and hydrated molecular structure. In this work, a novel biodegradable composite of sodium alginate hydrogel with wool needle-punched nonwoven fabric was produced for wound dressing by sol–gel technique. The wool nonwoven was dipped in the sodium alginate-water solution and then soaked in calcium chloride solution which resulted in hydrogel formation. FTIR analysis and SEM images confirm the presence of alginate hydrogel inside the needle-punched wool nonwoven fabric. The wound exudate absorbing capacity of hydrogel based wool nonwoven was increased 30 times as compared to pure wool nonwoven. Moreover, the tensile strength and moisture management properties of hydrogel based nonwoven were also enhanced. The unique combination of alginate hydrogel with biocompatible wool nonwoven fabric provides moist environment and can help in cell proliferation during wound healing process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号