首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of the cutting tool on a lathe   总被引:1,自引:0,他引:1  
We use a systematic approach combining a path-following scheme, the method of multiple scales, the method of harmonic balance, Floquet theory, and numerical simulations to investigate the local and global dynamics and stability of cutting tool on a lathe due to the regenerative mechanism. First, we use the method of multiple scales to determine the normal form of the Hopf bifurcation at all of the stability boundaries and calculate the limit cycles generated by the bifurcation. Then, we use a combination of a path-following scheme and the method of harmonic balance to continue the branch of generated limit cycles. Thus, we calculate small- and large-amplitude limit cycles and ascertain their stability using Floquet theory. We validate these results using numerical simulations. Then, we search for isolated branches of large-amplitude solutions coexisting with the linearly stable trivial solution. We use all of the results to generate bifurcation diagrams consisting of multiple large-amplitude stable and unstable branches of limit cycles coexisting with the trivial response, indicating three regions of operation, as in the experimental observations. Then, we investigate bifurcation control using cubic-velocity feedback and show that the unconditionally stable region can be expanded at the expense of the conditionally stable region.  相似文献   

2.
A Jeffcott rotor with an additional magnetic bearing locating at the disc is employed to investigate the effect of time delays on the non-linear dynamical behavior of the system. The time delays are presented in the proportional and derivative feedback, respectively. For the corresponding autonomous system, a linear stability analysis is performed for the system with two identical time delays in the control loop. The nature of a single Hopf bifurcation is determined by constructing a center manifold. For the non-autonomous system, the primary resonance response is studied for its small non-linear motions using the method of averaging. The effects of time delays and control gains, as well as excitation amplitude, on the amplitude of the steady-state response are investigated. Finally, experiments are carried out to validate the theoretical predictions.  相似文献   

3.
We perform a detailed study of two linear time-delayed feedback laws for control of friction-driven oscillations. Our comparative study also includes two different mathematical models for the nonlinear dependence of frictional forces on sliding speed. Linear analysis gives stability boundaries in the plane of control parameters. The equilibrium loses stability via a Hopf bifurcation. Dynamics near the bifurcation is studied using the method of multiple scales (MMS). The bifurcation is supercritical for one frictional force model and subcritical for the other, pointing to complications in the true nature of the bifurcation for friction-driven oscillations. The MMS results match very well with numerical solutions. Our analysis suggests that one form of the control force outperforms the other by many reasonable measures of control effectiveness.  相似文献   

4.
Lin  R.  Leng  G.  Lee  H. P. 《Nonlinear dynamics》1997,14(1):1-22
The dynamic behavior of a one-degree-of-freedom, parametrically excited nonlinear system is investigated. The Galerkin method is applied to the principal and fundamental parameteric resonance of the system. The continuation method is used to study the change of harmonic oscillation with respect to the variation of excitation frequency. The numerical stability analysis of the trivial solution is carried out and the stable and unstable regions of the trivial solution are given. They are found to agree with the results obtained by the analytical method of Galerkin. Periodic solutions are traced and the coexistence of multi-periodic solutions is observed With the change of excitation frequency the large amplitude periodic-2 oscillation is found to be in the same closed branch with the small amplitude periodic-2 solution. In addition, the bifurcation pattern of the trivial solution is found to change from subcritical Hopf bifurcation into supercritical Hopf bifurcation with the increase of excitation amplitude. Combined with the conventional numerical integration method, new complex dynamic behavior is detected.  相似文献   

5.
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated. The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton's principle. A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method. A high-dimensional model of the buckled beam is derived, concerning nonlinear coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve, and the Floquet theory is used to analyze the stability of the periodic solutions. Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited. Bifurcations including the saddle-node, Hopf, perioddoubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic motion is observed by using the fourth-order Runge-Kutta method, which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.  相似文献   

6.
Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.Published in Prikladnaya Mekhanika, Vol. 40, No. 10, pp. 135–144, October 2004.  相似文献   

7.
The effect of time delays occurring in a proportional-integral-derivative feedback controller on the linear stability of a simple electromechanical system is investigated by analyzing the characteristic transcendental equation. It is found that the trivial fixed point of the system can lose its stability through Hopf bifurcations when the time delay crosses certain critical values. Codimension two bifurcations, which result from non-resonant and resonant Hopf–Hopf bifurcation interactions, are also found to exist in the system.  相似文献   

8.
The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.  相似文献   

9.
A kind of three-species system with Holling type II functional response and feedback delays is introduced. By analyzing the associated characteristic equation, its local stability and the existence of Hopf bifurcation are obtained. We derive explicit formulas to determine the direction of the Hopf bifurcation and the stability of periodic solution bifurcated out by using the normal-form method and center manifold theorem. Numerical simulations confirm our theoretical findings.  相似文献   

10.
We consider a system of nonlinear delay differential equations that describes the growth of the mature population of a species with age-structure living over three patches. We analyze existence of non-negative homogeneous equilibria and their stability and discuss possible Hopf bifurcation from these equilibria. More precisely, by employing both the standard Hopf bifurcation theory and the symmetric bifurcation theory for functional differential equations, we obtain very rich dynamics for the system, including bistable equilibria, transient oscillations, synchronous periodic solutions, phase-locked periodic solutions, mirror-reflecting waves and standing waves.  相似文献   

11.
This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.  相似文献   

12.
In this paper, the Hopf bifurcations and limit cycle oscillations (LCOs) of an airfoil with cubic nonlinearity in supersonic\hypersonic flow are investigated. The harmonic balance method and multivariable Floquet theory are applied to analyze the LCOs of the airfoil. Four distinct cases of the LCOs response are detected in this system: (I) supercritical Hopf bifurcation, (II) a single subcritical Hopf bifurcation, (III) two subcritical Hopf bifurcations, and (IV) no Hopf bifurcation. Furthermore, the parameter variations domains separating the supercritical and subcritical Hopf bifurcations are presented using singularity theory.  相似文献   

13.
The non-linear behaviour of a slender beam carrying a lumped mass subjected to principal parametric base excitation is investigated. The dimension of the beam–mass system and the position of the attached mass are so adjusted that the system exhibits 3 : 1 internal resonance. Multi-mode discretization of the governing equation which retains the cubic non-linearities of geometrical and inertial type is carried out using Galerkin’s method. The method of multiple scales is used to reduce the second-order temporal differential equation to a set of first-order differential equations which is then solved numerically to obtain the steady-state response and the stability of the system. The linear first-order perturbation results show new zones of instability due to the presence of internal resonance. For low amplitude of excitation and damping Hopf bifurcations are observed in the trivial steady-state response. The multi-branched non-trivial response curves show turning point, pitch-fork and Hopf bifurcations. Cascade of period and torus doubling, crises as well as the Shilnikov mechanism for chaos are observed. This is the first natural physical system exhibiting a countable infinity of horseshoes in a neighbourhood of the homoclinic orbit.  相似文献   

14.
J. C. Ji 《Nonlinear dynamics》2014,78(3):2161-2184
Stable bifurcating solutions may appear in an autonomous time-delayed nonlinear oscillator having quadratic nonlinearity after the trivial equilibrium loses its stability via two-to-one resonant Hopf bifurcations. For the corresponding non-autonomous time-delayed nonlinear oscillator, the dynamic interactions between the periodic excitation and the stable bifurcating solutions can induce resonant behaviour in the forced response when the forcing frequency and the frequencies of Hopf bifurcations satisfy certain relationships. Under hard excitations, the forced response of the time-delayed nonlinear oscillator can exhibit three types of secondary resonances, which are super-harmonic resonance at half the lower Hopf bifurcation frequency, sub-harmonic resonance at two times the higher Hopf bifurcation frequency and additive resonance at the sum of two Hopf bifurcation frequencies. With the help of centre manifold theorem and the method of multiple scales, the secondary resonance response of the time-delayed nonlinear oscillator following two-to-one resonant Hopf bifurcations is studied based on a set of four averaged equations for the amplitudes and phases of the free-oscillation terms, which are obtained from the reduced four-dimensional ordinary differential equations for the flow on the centre manifold. The first-order approximate solutions and the nonlinear algebraic equations for the amplitudes and phases of the free-oscillation terms in the steady state solutions are derived for three secondary resonances. Frequency-response curves, time trajectories, phase portraits and Poincare sections are numerically obtained to show the secondary resonance response. Analytical results are found to be in good agreement with those of direct numerical integrations.  相似文献   

15.
The discrete equations developed in Part I are here used to analyze the non-linear dynamics of an inextensional shear indeformable beam with given end constraints. The model takes into account the non-linear effects of warping and of torsional elongation. Non-linear 3D oscillations of a beam with a cross-section having one symmetry axis is examined. Only terms of higher magnitude are retained in the equations, which exhibit quadratic, cubic and combination resonances. A harmonic load acting in the direction of the symmetry axis and in resonance with the corresponding natural frequency, is considered. Steady-state solutions and their stability are studied; in particular the effects of non-linear warping and of torsional elongation on the response are highlighted.  相似文献   

16.
We design a piezoaeroelastic energy harvester consisting of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. We choose the linear springs to produce the minimum flutter speed and then implement a linear velocity feedback to reduce the flutter speed to any desired value and hence produce limit-cycle oscillations at low wind speeds. Then, we use the center-manifold theorem to derive the normal form of the Hopf bifurcation near the flutter onset, which, in turn, is used to choose the nonlinear spring coefficients that produce supercritical Hopf bifurcations and increase the amplitudes of the ensuing limit cycles and hence the harvested power. For given gains and hence reduced flutter speeds, the harvested power is observed to increase, achieve a maximum, and then decrease as the wind speed increases. Furthermore, the response undergoes a secondary supercritical Hopf bifurcation, resulting in either a quasiperiodic motion or a periodic motion with a large period. As the wind speed is increased further, the response becomes eventually chaotic. These complex responses may result in a reduction in the generated power. To overcome this adverse effect, we propose to adjust the gains to increase the flutter speed and hence push the secondary Hopf bifurcation to higher wind speeds.  相似文献   

17.
The stability and local bifurcation of a simply-supported flexible beam(Bernoulli- Euler type)carrying a moving mass and subjected to harmonic axial excitation are investigated. In the theoretical analysis,the partial differential equation of motion with the fifth-order nonlinear term is solved using the method of multiple scales(a perturbation technique).The stability and local bifurcation of the beam are analyzed for 1/2 sub harmonic resonance.The results show that some of the parameters,especially the velocity of moving mass and external excitation,affect the local bifurcation significantly.Therefore,these parameters play important roles in the system stability.  相似文献   

18.
Class-B laser systems can be described by a set of slow-fast differential equations with a small parameter, and they exhibit pulsating oscillations in common. In this paper, the impact of the delayed feedback on the pulsating solutions is investigated. At first, a careful analysis of the local stability and bifurcation shows the existence of a series of Hopf bifurcations and double Hopf bifurcations when the strength of the delayed feedback or the delay increases, by means of stability switches. Then, an application of the geometric singular perturbation theory reveals the evolutional mechanism of the pulsating solutions from transients to stationary states, and the effect of the delayed feedback upon the pulsating solutions is examined.  相似文献   

19.
This paper is concerned with a Lotka?CVolterra competition system with multiple delays. Firstly, we investigate the existence and stability of the positive equilibrium. In particular, we find that the system has Hopf bifurcation at the positive equilibrium, whereas this singularity does not occur for the corresponding system with two delays when interspecies competition is weaker than intraspecies competition. Secondly, we analyze the stability of the periodic solutions by reducing the original system on the center manifold. Finally, some numerical examples are given to verify our theoretical results.  相似文献   

20.
In this paper, we consider the effect of distributed delays in a three-neuron unidirectional ring. Sufficient conditions for existence of unique equilibrium, multiple equilibria and their local stability are derived. Taking the average delay as a bifurcation parameter, we find two critical values at which the system undergoes Hopf bifurcations. The orbital asymptotic stability of the Hopf bifurcating periodic solutions is investigated by using the method of multiple scales. The global Hopf bifurcation is also studied. Finally, the theoretical results are illustrated by some numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号