首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rotor driven by an ideal source, i.e., a source capable of delivering unlimited amount of power, becomes unstable beyond a certain threshold spin speed due to non-conservative circulatory forces. The circulatory forces considered in this paper arise out of rotating internal damping. If the drive is non-ideal then the rotor spin speed cannot exceed the stability threshold. This phenomenon is a type of the Sommerfeld effect. In this work, a DC motor driving four-degrees-of-freedom rotor with internal damping and gyroscopic effects is considered and the corresponding steady-state spin frequency and the whirl orbit amplitude are analytically derived as functions of the parameters of the drive and the rotor system.  相似文献   

2.
An isotropic flexible shaft, acted by nonlinear fluid-induced forces generated from oil-lubricated journal bearings and hydrodynamic seal, is considered in this paper. Dimension reductions of the rotor system were carried out by both the standard Galerkin method and the nonlinear Galerkin method. Numerical simulations provide bifurcation diagrams, spectrum cascade, orbits of the disk center and Poincaré maps, to demonstrate the dynamical behaviors of the system. The results reveal transitions, or bifurcations, of the rotor whirl from being synchronous to non-synchronous as the unstable speed is exceeded. The non-synchronous oil/seal whirl is a quasi-periodic motion. In the regime of quasi-periodic motion, the “windows” of multi-periodic motion were found. The investigation shows that the nonlinear Galerkin method has an advantage over the standard one with the same order of truncations, because the influences of higher modes are considered by the former.  相似文献   

3.
为研究转子一轴承系统中非线性油膜力引起的半速涡动,本文给出了将吴文俊消去法和符号计算相结合的分析方法。基于短轴承假设,得到了单盘转子系统涡动时盘心、轴心及涡动角速度相对于无量纲转速的关系式。分析研究了转子涡动角速度变化规律及出现的双稳态现象。  相似文献   

4.
分析了在动载轴承非稳态非线性油膜力作用下,具有横向裂纹柔性轴Jeffcott转子在非线性涡动影响下的动力特性。通过数值计算表明,在油膜失稳转速前,随着裂纹轴刚度变化比的增大,系统在低转速区域内具有丰富的非线性动力行为,出现倍周期分叉及混沌现象,涡动振幅随转速升高而减小,直到非稳态非线性油膜失稳,在无裂纹转子油膜临界失稳点处发现了类Hopf分叉现象,系统运动由平衡变为拟周期运动;裂纹转子在油膜临界失稳时的系统运动亦为拟周期运动,裂纹转子轴刚度变化对油膜失稳点及油膜失稳之后转子的运动影响不大,转子系统作拟周期运动。  相似文献   

5.
本文讨论了具有内外阻尼的高速充液转子的动力稳定性。首先通过对旋转流体的平面流场的求解,导出充液转子作简谐运动时流体对转子的动压力,由此导出转子的运动方程;讨论了充液转子的动力稳定性,给出了稳定性解析判据和稳定性边界。结果表明,存在转速门槛值,低于该转速时,充液转子可存在稳定区;当高于该转速时,系统永远失稳,这一结论复盖了已有文献的结果。  相似文献   

6.
汽车涡轮增压器广泛采用浮环轴承支承的小型轻质转子系统,以实现100 000~300 000 r/min的工作转速,提高发动机功率和动力性能,并降低燃油消耗和排放. 在此超高速工况下,动压油膜的强非线性作用和转子固有的不平衡效应使该系统呈现出复杂的动力学现象,其中油膜涡动、振荡、跳跃、倍周期分岔和混沌等非线性动力学行为对增压器的健康运转意义重大,因而备受关注. 本文作者从摩擦学动力学耦合的角度出发,基于流体动压轴承润滑理论和有限差分法计算非稳态油膜压力,结合达朗贝尔原理和传递矩阵法建立了转子离散化动力学方程,提出了一种由双油膜浮环支承的涡轮增压器转子系统动力学模型,并从转子轨迹、轴承偏心率、频谱响应、庞加莱映射和分岔特性等方面比较分析,描述了该非线性轴承-转子系统的不平衡效应及油膜失稳特征. 结果表明:转子一般在相对低速下作稳定的单周期不平衡振动,在高转速下其被油膜失稳引起的次同步涡动所抑制,但不平衡量的增加可阻碍转子以拟周期运动通向混沌运动的路径;适当不平衡补偿下,由于内、外油膜间交互的非线性刚度和阻尼作用,在油膜失稳区间之间的中高速区会出现适合增压器健康运转的稳定区间.   相似文献   

7.
Deflection of a rotor-disk at the free end of a flexible overhung rotor-shaft causes rotation about diametral axis and consequently leads to a strong gyroscopic coupling in a spinning overhung rotor system. When the rotor is spun up about its axis, the unbalance in the rotor-disk causes transverse and rotational vibrations to increase as the spin speed approaches the critical speed of the rotor. These transverse and rotational vibrations dissipate a lot of energy, and if the rotor is driven through a non-ideal drive, i.e., a motor which can supply a limited amount of power, then the entire motor power may be spent to account for the energy dissipation. As a result, the rotor speed may get stuck in resonance at the critical speed or jump through the critical speed to a much higher speed with lower transverse and rotational vibration levels. These symptoms, normally referred to as the Sommerfeld effect, occur due to the intrinsic energetic coupling between the drive and the driven systems and are important design considerations for development of various rotating machinery with flexible rotor-shafts or supports (bearings). Sommerfeld effect in a strongly gyroscopic rotor dynamic system is studied in this article. The dynamics of an overhung rotor system near the regimes of Sommerfeld effect is studied by using a discrete and a continuous shaft-rotor model coupled with the model of the non-ideal motor drive. The models are developed using multi-energy domain modeling approach in bond graph model form. A steady-state analysis of power transfer mechanism is used to postulate the ideal characteristics of Sommerfeld effect in the neighborhood of the critical speed, and thereafter, full transient analysis is performed with aid of the bond graph model-generated coupled equations of motion to validate the postulated characteristics of the Sommerfeld effect.  相似文献   

8.
Radial and torsional vibration characteristics of a rub rotor   总被引:1,自引:0,他引:1  
The nonlinear dynamics characteristics of a vertical Jeffcott rotor with radial rub-impact are investigated in this paper. Considering the influence of speed whirling, the radial-torsional coupling model of the rub rotor in polar coordinate system is established. With the improved model, the dynamics characteristics of radial vibration, whirl and torsional vibration are analyzed under no rub, full annual rub and partial rub conditions. The radial harmonic frequency is obtained by the harmonic balance method. The torsional vibration has the harmonic frequency component similar to the radial vibration. The new harmonic frequency is useful to help diagnose the occurrence of rub fault. A reasonable explanation of backward whirl instability is presented in this paper. With development of partial rub, the backward whirl will occur. When the backward whirling frequency is near the natural frequency, the instability is observed. The numerical method gives the quantitative results and reveals the backward whirl instability process of rub.  相似文献   

9.
The stability domain of an internally damped flexible spinning shaft, which is driven by a non-ideal source, is studied in this paper. It is found that the higher transverse modes may become unstable before the lower ones under certain conditions. In particular, we find the entrainment of the shaft spinning speed at specific values corresponding to the lowest stability threshold among all transverse modes. Moreover, the steady state amplitude of the transverse vibrations when the shaft spinning speed is stuck at the stability threshold is determined analytically. The analytical results thus obtained are validated with numerical simulations.  相似文献   

10.
High-speed rotors are often supported in floating ring bearings because of their good damping behavior. In contrast to conventional hydrodynamic bearings with a single oil film, full-floating ring bearings consist of two oil films: An inner and an outer oil film. As single oil-film bearings, full-floating ring bearings also show the typical fluid-film-induced instabilities (self-excited vibrations). Both inner and outer oil films can become unstable and exhibit oil whirl/whip instabilities. The paper at hand considers a Laval (Jeffcott) rotor, which is symmetrically supported in full-floating ring bearings, and investigates the occurring oil whirl/whip effects by means of run-up simulations. It is shown that the inner oil film, which usually becomes unstable first, gives rise to a limit-cycle oscillation with an exactly circular rotor orbit, if gravity and imbalance are neglected. Interesting is the instability generated by the outer oil film. The calculations demonstrate that instability in the outer oil film does not lead to a simple circular limit-cycle orbit. Whirl/whip-induced limit-cycle oscillations generated by the outer oil film are more complex and entail a coupled circumferential and radial motion, although the mechanical problem is radially symmetric, if gravity and imbalance are neglected. Thus, whirl/whip instability in the outer fluid film may be interpreted as symmetry breaking. Finally, a further kind of bifurcation/instability occurring in rotors supported in full-floating ring bearings—called Total Instability in this paper—is analyzed. It is shown that Total Instability is caused by synchronization of two limit cycles, namely synchronization of the inner and outer oil whirl/whip. Total Instability is of practical interest and observed in real technical rotor systems, and frequently leads to complete rotor damage.  相似文献   

11.
A simple Jeffcott rotor is considered with broadband temporal random variations of internal damping which are described using the theory of Markov processes. Transverse response of the rotor with stiffening nonlinearity either in external damping or in restoring force is studied by stochastic averaging method. This method reduces the problems to stochastic differential equations (SDEs) for which analytical solutions are obtained for the Fokker–Planck–Kolmogorov (FPK) equations for stationary probability density functions (PDFs) of the squared whirl radius of the shaft. These PDFs do exist beyond the dynamic instability threshold and they correspond to forward whirl of the rotor. At rotation speeds just slightly above the instability threshold, the response PDF has integrable singularity at zero which corresponds to intermittency in the response.  相似文献   

12.
Francesco Sorge 《Meccanica》2008,43(6):577-589
An efficient and automatic attenuation technique for the whirling motion of rotating machinery can be achieved by supporting the journal boxes elastically and providing them with suitable rubbing surfaces subject to dry friction normal to the shaft axis. The critical flexural speeds are easily cut off and the whirl amplitude is minimized throughout the frequency range. Confining the usual operative angular speed of the rotor in the range of adhesive contact between the dry friction surfaces, there is no significant increase of power dissipation or heat production as a whole due to this type of suspension system, whose task is just to suppress the resonant peaks when passing the critical speeds. Moreover, the wear of the rubbing surfaces can be easily compensated by use of suitable spring loading systems for the friction contact. The dry friction damping is also compared with an equivalent viscous damping, where the equivalence has to be understood in terms of work dissipated per single revolution of the rotor. As for other conventional cases, the shaft hysteresis is found to exert a destabilizing effect above the first critical speed, which however can be compensated by the other dissipation sources. The system stability is here studied perturbing the periodic motion and applying the Floquet theory.  相似文献   

13.
According to the linear theory of vibration for spinning disks, the backward traveling waves of some of the modes may have zero natural frequency at what are called the critical speeds. At these speeds, the linear equations of motion cannot properly predict the amplitude response of the spinning disk, and nonlinear equations of motion must be used. In this paper, geometrical nonlinear equations of motion based on Von Karman plate theory are employed to study the dynamics of an elastically constrained disk near its critical speeds. A one-mode approximation is used to examine the effect of elastic constraint on the amplitude response. Presenting the equations in a space-fixed coordinate system, this study aims to find closed-form solutions for some of the equilibrium configurations of an elastically constrained spinning disk. Also, the stability of these configurations is studied using analytical techniques. It is shown that below the critical speed, one neutrally stable equilibrium solution exists, while above it, a bifurcation occurs. In this situation, two more branches of equilibrium configurations emerge, one of which is neutrally stable and the other unstable. Closed-form expressions for the bifurcation points are obtained. Due to the effect of an elastic constraint, a bifurcation occurs and the previously neutrally stable equilibrium configuration turns unstable. Also at this bifurcation point, two more branches of equilibrium solutions emerge.  相似文献   

14.
Research on spinning shafts is mostly restricted to cases of constant rotating speed without examining the dynamics during their spin-up or spin-down operation. In this article, initially the equations of motion for a spinning shaft with non-constant speed are derived, then the system is discretised, and finally a nonlinear dynamic analysis is performed using multiple scales perturbation method. The system in first-order approximation takes the form of two coupled sets of paired equations. The first pair describes the torsional and the rigid body rotation, whilst the second consists of the equations describing the two lateral bending motions. Notably, equations of the lateral bending motions of first-order approximation coincide with the system in case of constant rotating speed, and considering the amplitude modulation equations, as it is shown, there are detuning frequencies from the Campbell diagram. The nonlinear normal modes of the system have been determined analytically up to the second-order approximation. The comparison of the analytical solutions with direct numerical simulations shows good agreement up to the validity of the performed analysis. Finally, it is shown that the Campbell diagram in the case of spin-up or spin-down operation cannot describe the critical situations of the shaft. This work paves the way, for new safe operational ‘modes’ of rotating structures bypassing critical situations, and also it is essential to identify the validity of the tools for defining critical situations in rotating structures with non-constant rotating speeds, which can be applied not only in spinning shafts but in all rotating structures.  相似文献   

15.
The dynamic analysis of a cracked rotor with a breathing crack leads to the formulation of a nonlinear time-dependent problem. For the simple Jeffcott rotor model, this problem has been addressed using numerical integration methods that are very time consuming. A first simplification can be done assuming that the stiffness is a time-dependent function obtained with the quasi-static displacements of the shaft. In this study, we propose a new procedure to analyze the nonlinear dynamic of such a kind of cracked rotors using an iterative technique that transforms the full nonlinear problem in a succession of time-dependent linear ones. We show with different examples that this technique virtually gives the same results as the classical integration methods, but being much more efficient and achieving a significant saving of computation time. The calculations using the proposed method are over a 100 times faster than the corresponding to integrate the full nonlinear problem, being very helpful in on-line crack identification procedures. Also, this analysis shows that, in cases for which the vertical whirl amplitude is greater than the shaft weight static deflection, the use of simplified methods based on the quasi-static stiffness matrix could not be adequate.  相似文献   

16.
Rotor instabilities in turbomachinery often manifest themselves as a re-excitation of the first rotor critical speed resulting in lateral rotor vibrations at a frequency below the rotor operating frequency. Considerable work exists in the literature involving the analysis of destabilizing mechanisms and passive solutions for reducing subsynchronous vibrations. The authors propose here a novel active control solution utilizing active magnetic bearing (AMB) technology in conjunction with conventional support bearings. The AMB is utilized as an active magnetic damper (AMD) at rotor locations inboard of conventional support bearings. Presented here are initial proof-of-concept experimental results using an AMD for vibration control of subsynchronous rotor vibrations in a high-speed single-disk laboratory rotor. The study shows that subsynchronous vibrations are reducible with an AMD and up to a 93% reduction in the amplitude of subsynchronous vibrations is demonstrated. The study also shows that the AMD can significantly increase synchronous vibration response (up to 218% in one case) by increasing system stiffness and pushing a critical speed closer to an operating speed. The overall results from this work demonstrate that reduction in subsynchronous response is feasible and that full rotor dynamic analysis and design is critical for the successful application of this approach.  相似文献   

17.
基于行波型超声马达的超声波振动减摩试验研究   总被引:1,自引:0,他引:1  
提出了行波型超声马达振动减摩的几何模型,采用电磁电机驱动、电磁电机结合一路驻波振动驱动及行波型超声马达驱动3种驱动方式模拟行波型超声马达摩擦驱动特点,借助超声马达摩擦特性模拟试验装置,引入摩擦系数降低率的概念,研究了电机转速、预压力、超声波激励电压和摩擦材料等对定、转子摩擦副摩擦系数的影响.结果表明:在较高相对滑动速度、小预压力及大振幅条件下,超声波振动减摩现象显著.  相似文献   

18.
The effects of unbalance on oil whirl   总被引:2,自引:0,他引:2  
The nonlinear behavior of an unbalanced rotor supported in a fluid film bearing is analyzed. A simplified two dimensional model is adopted which uses the long-bearing approximation with a -film to account for cavitation. This model has been thoroughly studied by Myers [1] in the balanced case, where it is shown that the whirl instability is the result of a Hopf bifurcation. The implications of imbalance are studied in this paper. This leads to the study of a periodically perturbed Hopf bifurcation. It is shown that the dynamics in this situation can, especially under certain nonlinear resonance conditions, have an extremely complicated dependence on the system parameters and the rotor speed. Complete bifurcation diagrams are presented for a particular rotor model which demonstrate this dependence.  相似文献   

19.
The influence of labyrinth seal on the stability of unbalanced rotor system was presented . Under the periodic excitation of rotor unbalance , the whirling vibration of rotor is synchronous if the rotation speed is below stability threshold, whereas the vibration becomes severe and asynchronous which is defined as unstable if the rotation speed exceeds threshold . The. Muszynska model of seal force and shooting method were used to investigate synchronous solution of the dynamic equation of rotor system. Then , based on Floquet theory the stability of synchronous solution and unstable dynamic characteristic of system were analyzed.  相似文献   

20.
The aim of the present study is to investigate the nonlinear free vibration of spinning cylindrical shells under spinning and arbitrary boundary conditions. Artificial springs are used to simulate arbitrary boundary conditions. Sanders' shell theory is employed, and von Kármán nonlinear terms are considered in the theoretical modeling. By using Chebyshev polynomials as admissible functions, motion equations are derived with the Ritz method. Then, a direct iteration method is used to obtain the nonlinear vibration frequencies. The effects of the circumferential wave number, the boundary spring stiffness, and the spinning speed on the nonlinear vibration characteristics of the shells are highlighted. It is found that there exist sensitive intervals for the boundary spring stiffness, which makes the variation of the nonlinear frequency ratio more evident. The decline of the frequency ratio caused by the spinning speed is more significant for the higher vibration amplitude and the smaller boundary spring stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号