首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deposition of aerosol particles onto filter fibers under the effect of inertial forces is studied in a wide range of Stokes numbers (St) at Reynolds numbers close to unity (Re ∼ 1). Coefficients η of the capture of inertial particles with finite sizes in model filters composed of parallel rows of identical parallel fibers located normal to the direction of a flow are determined based on the numerical solution of the Navier-Stokes and particle motion equations. It is shown that, at Re < 1 and a constant particle-to-fiber radius ratio, R = r p/a, number St uniquely characterizes capture coefficients η for particles with different densities, while, at Re ≥ 1, the capture coefficient depends on both St and Re. At constant R and St values, the larger Re the higher the capture coefficient. The influence of the structure of the model filter on pressure drop Δp and η is investigated. A nonuniform arrangement of fibers in rows is shown to increase the Δp/U ratio at lower Re values and to make the η -St dependence more pronounced than that for systems of uniformly ordered fibers. The results of calculations agree with the experimental data.  相似文献   

2.
The diffusion deposition of nanoparticles is studied from a flow at low Reynolds numbers in model filters composed of permeable circular porous fibers. The field of particle concentration is calculated and the capture coefficient is determined for a cell, as well as the isolated row of parallel fibers within a wide range of Peclet numbers (Pe) depending on the fiber permeability. It is shown that at Pe > 1, the diffusion capture coefficient η increases with permeability, while at Pe → ∞, it tends toward the limiting value, which is equal to the gas flow rate through the porous fiber. The capture coefficients calculated from a cell model and for a row of fibers are almost equal to each other. The diffusion deposition of aerosol particles in the highest penetration range is calculated with an allowance for their finite sizes and it is shown that the radii of most penetrable particles decrease with an increase in fiber permeability.  相似文献   

3.
The deposition of aerosol nanoparticles from Stokes flows in screen-type diffusion batteries designed for the determination of diffusion coefficients for suspended nanoparticles is considered. Average fiber collection efficiencies η calculated for screens consisting of two perpendicularly contacting rows of parallel equidistant straight fibers agree with the experimental data obtained for woven screens within the Peclet number range Pe = 0.15−1000. It is shown that, for dense screens, the η ∼ Pe−2/3 power dependence is valid at Pe > 10. For rarefied screens, this dependence is fulfilled down to Pe ∼ 0.1. At Pe ≪ 1, the integral flow of particles advancing on the fibers of the first row in the screen and the fiber collection efficiency, η of an isolated row tends to a geometrical limit, which is equal to the ratio of the distance between the axes of the fibers to the fiber diameter.  相似文献   

4.
The diffusion deposition of submicron aerosol particles in model filters consisting of fibers covered with permeable porous shells is studied. An ordered system of parallel cylinders arranged perpendicular to the flow is used as a model filter. The results of calculations are given for the dependences of the capture coefficient on the shell radius, the shell permeability, the packing density of the filters, the particle radius, and the flow velocity. Calculations are performed within a wide range of Peclet numbers. It is shown that the capture coefficient and the quality criterion γ of a filter increase with the diffusion mobility of particles and shell permeability, as well as that the dependence of the quality criterion on the radius of permeable shells has a maximum. It is also shown that the capture coefficients for fibers with porous shells, calculated using the cell model and the isolated row of fibers, almost coincide with one another.  相似文献   

5.
The diffusion deposition of point aerosol particles from a flow in model granular (grained) filters, i.e., separate layers composed of parallel chains of spherical granules, has been studied at small Reynolds numbers. Numerical solution of the Stokes and convective diffusion equations has been employed to determine the drag forces and granule collection efficiencies as depending on the Peclet diffusion number in a range Pe = 0.02–2 × 104 and the ratio between the granule diameter and the distance between chain axes. Layers of closed chains with square and hexagonal packings have been considered. Approximation formulas have been derived for calculation of nanoparticle penetration in model granular filters.  相似文献   

6.
Wood-fiber phenol-formaldehyde-resin (PFR) modified surfaces, obtained from the adsorption of a PFR/water solution, are investigated as a function of the nature and the amount of PFR adsorbed. Surface are measurements are performed by using krypton adsorption at 77 K. Chemical modification is monitored by the electron spectroscopy for chemical analysis (ESCA) technique and the surface energy by the inverse phase gas chromatography (IPGC) method at infinite dilution. The London dispersive componentγ S L of the surface energy shows a relationship to the concentration of carbon and oxgen at the fiber surface.γ S L increases from 27.5 mN·m−1 for the untreated fiber to 42.5 mN·m−1 for the fibers treated with 20% high molecular-weight-grade phenol-formaldehyde. The surface atomic ratio O/C determined using the ESCA technique exhibits a decrease from 44% for untreated to 31% for treated samples. Surface area also decreases from 2.09 m2/g to 1.50 m2/g. The PFR adsorbed by wood fibers is observed as the dispersive component of surface energy starts to increase, as the surface oxygen concentration decreases, and on the surface area of the wood fiber.  相似文献   

7.
The deposition of aerosol nanoparticles on model fibrous filters of different porosity at small Reynolds numbers was considered. The efficiency of particle deposition on a fiber was determined by the numerical solution of the convective diffusion equation in the ordered systems of parallel fibers located perpendicularly to a flow. The calculation results agree with the known experiments on the model filters over the Peclet number (Pe) range from 0.05 to 1000. It was shown that the Natanson–Stechkina formula for the coefficient of capture obtained in the limit of thin diffusion boundary layer at Pe 1 is valid within a wide range of the Peclet numbers up to Pe 1.  相似文献   

8.
With the low permeability and high swelling property, Gaomiaozi (GMZ) bentonite is regarded as the favorable candidate backfilling material for a potential repository. The diffusion behaviors of HTO in GMZ bentonite were studied to obtain effective diffusion coefficient (D e) and accessible porosity (ε) by through- and out-diffusion experiments. A computer code named Fitting for diffusion coefficient (FDP) was used for the experimental data processing and theoretical modeling. The D e and ε values were (5.2–11.2) × 10−11 m2/s and 0.35–0.50 at dry density from 1,800 to 2,000 kg/m3, respectively. The D e values at 1,800 kg/m3 was a little higher than that of at 2,000 kg/m3, whereas the D e value at 1,600 kg/m3 was significantly higher (approximately twice) than that of at 1,800 and 2,000 kg/m3. It may be explained that the diffusion of HTO mainly occurred in the interlayer space for the highly compacted clay (dry density exceeding 1,300 kg/m3). 1,800 and 2,000 kg/m3 probably had similar interlayer space, whereas 1,600 kg/m3 had more. Both D e and ε values decreased with increasing dry density. For compacted bentonite, the relationship of D e and ε could be described by Archie’s law with exponent n = 4.5 ± 1.0.  相似文献   

9.
Results of numerical simulation have been reported for the flow field and diffusion deposition of nanoparticles in a model dust-loaded fibrous filter, i.e., a row of parallel fibers coated with porous permeable shells shifted toward an incident flow. The flow field and point particle collection efficiency on fibers coated with the shells have been calculated by combining the Stokes, Brinkman, and convective diffusion equations. It has been shown that the pressure drops and efficiencies of nanoparticle deposition in the filters composed by fibers with coaxial and asymmetric porous shells are almost identical.  相似文献   

10.
The deposition of Brownian submicron aerosol particles of high density in fibrous filters with allowance for interception effect, influence of gravitational, van der Waals forces, and the gas slip on the surface of ultrafine fibers was considered. Based on the numerical solution of the equation of convective diffusion in the field of external forces, the capture coefficient was calculated as a function of particle size and density, the angle between the vectors of gravity force, and the face flow velocity. It was shown that, for descending flow, the radius of most penetrating dense particles appeared to be noticeably smaller than for the ascending flow.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 352–356.Original Russian Text Copyright © 2005 by Kirsh.  相似文献   

11.
Kinetics of N-methyl pyrrolidone evaporation from swollen photo-crosslinked polyacrylate was monitored thermogravimetrically at temperatures ranging from 323 to 398 K. Crosslink density dependence of evaporation kinetics was investigated in photo-crosslinked polyacrylates with crosslinked density ranging from ≈1.2 × 102 to ≈1.7 × 104 mol m−3 and number of main chain atoms between crosslinks ranging from ≈70 atoms to ≈6 atoms, respectively. As was shown, evaporation kinetics was controlled by the solvent diffusion in polymer. Activation energies of evaporation (diffusion) were deduced from the rate measurements at different temperatures. Apparent activation energy of evaporation decreased from 48.7 to 31.1 kJ mol−1 with crosslink density increase. Activation energy of pure N-methyl pyrrolidone evaporation was 50.6 kJ mol−1. Decrease of the rate of solvent diffusion and unexpected decrease of diffusion activation energy with increase of crosslink density of swollen polymer matrix was explained by decrease in polymer chain segments mobility, as indicated by Eyring’s approach to diffusion in polymers.  相似文献   

12.
Methodology for time-weighted average (TWA) air measurements of semivolatile organophosphate triesters, widely used flame-retardants and plasticizers, and common indoor pollutants is presented. Dynamic non-equilibrium solid-phase microextraction (SPME) for air sampling, in combination with GC/PICI and ion trap tandem MS, yields a fast, almost solvent-free method with low detection limits. Methanol was used as reagent gas for PICI, yielding stable protonated molecules and few fragments. A field sampler, in which a pumped airflow over three polydimethylsiloxane (PDMS) 100-μm fibers in series was applied, was constructed, evaluated, and used for the measurements. The method LODs were in the range 2–26 ng m−3 for a sampling period of 2 h. The uptake on the SPME fibers was shown to be about five times faster for triphenyl phosphate compared to the other investigated organophosphate esters, most likely due to more lipophilic properties of the aromatic compound. The boundary layer for triphenyl phosphate when using a 100-μm PDMS sorbent was determined to 0.08 mm at a linear air velocity of 34 cm s−1. Five different organophosphate triesters were detected in air from a laboratory and a lecture hall, at concentrations ranging from 7 ng m−3 up to 2.8 μg m−3.  相似文献   

13.
The real properties of the geometry of the capture region of the particles in the pores of the magnetic filters which are formed by magnetized ferromagnetic microparticles are investigated. The flow velocity profile of the liquid in this region is determined and the effect of the velocity profile to keep the particles in the pores is examined. The magnetic and the hydrodynamic powers have been expressed explicitly by considering, the pore geometry, magnetized property and the flow velocity. Obtained expression was explained on the V m /V f ratio, which is named as magnetic and flow velocities rate in filtering and separation processes. According to this expression, the volume and surface ratios of the particles which are accumulated in the particles capture region are taken into account. From theory and practice point of view, the derived expressions and results are put into a form to make easy to use for design, control and optimization of the filters.  相似文献   

14.
The peculiarities of the hydrodynamic flow field and diffusion deposition of nanoparticles in filtration layers of nanofibers obtained by spraying a polymer solution in an electric field are considered. The main attention is focused on the effect of doubled nanofibers or pairs of parallel fibers that result from longitudinal splitting of charged jets on the hydrodynamic characteristics. The calculations are performed for a periodical row of doubled parallel fibers oriented normal to the flow. The flow field and the rate of nanoparticle deposition in the row are investigated as dependences on the distances between the pairs of the fibers, interfiber distances in pairs, orientation of the pairs relative to the direction of a flow, and the relations between fiber diameters in the pairs. The equations for the flow of a viscous incompressible liquid are solved under the Stokes approximation employing the method of fundamental solutions, and the stream functions, fields of velocities, and drag forces acting upon the fibers are determined. For the found flow fields, the coefficients of diffusion capture are determined by the numerical solution of the convective diffusion equation. It is established that, when fibers are drawn together in pairs to their contact in a rarefied row, the drag force decreases twofold. This result agrees with experimental data and the analytical solution for the constrained flow around pairs of similar fibers in a rarefied row.  相似文献   

15.
Colloidal indigo is reduced to an aqueous solution of leuco-indigo in a mediated two-electron process converting the water-insoluble dye into the water-soluble leuco form. The colloidal dye does not interact directly with the electrode surface, and to employ an electrochemical process for this reduction, the redox mediator 1,8-dihydroxyanthraquinone (1,8-DHAQ) is used to transfer electrons from the electrode to the dye. The mediated reduction process is investigated at a (500-kHz ultrasound-assisted) rotating disc electrode, and the quantitative analysis of voltammetric data is attempted employing the Digisim numerical simulation software package. At the most effective temperature, 353 K, the diffusion coefficient for 1,8-DHAQ is (0.84±0.08)×10−9 m2 s−1, and it is shown that an apparently kinetically controlled reaction between the reduced form of the mediator and the colloidal indigo occurs within the diffusion layer at the electrode surface. The apparent bimolecular rate constant k app=3 mol m−3 s−1 for the rate law \fracd[ \textleuco - \textindigo ] dt = k\textapp ×[ \textmediator ] ×[ \textindigo ]\frac{{d{\left[ {{\text{leuco}} - {\text{indigo}}} \right]}}} {{dt}} = k_{{{\text{app}}}} \times {\left[ {{\text{mediator}}} \right]} \times {\left[ {{\text{indigo}}} \right]} is determined and attributed to a mediator diffusion controlled dissolution of the colloid particles. The average particle size and the number of molecules per particles are estimated from the apparent bimolecular rate constant and confirmed by scanning electron microscopy.  相似文献   

16.
The effect of gas slip at fibers on the drag to a flow and the deposition of submicron particles in model filters with a tree-dimensional flow field has been considered. The average values of the drag force and the efficiency of diffusion collection of particles with finite sizes in a double hexagonal three-dimensional model filter taken as a standard uniform filter have been calculated as depending on the packing density of fibers and the Knudsen number. It has been shown that, in the region of the sizes of the most penetrating particles, under preset conditions, and at specified filter parameters, the obtained collection efficiency values agree with the results of calculations performed by empirical formulas for a model fan filter. Moreover, formulas derived for a planar flow taking into account the slip effect are applicable to highly porous filters.  相似文献   

17.
It is assumed that the intensity of the vibrational Raman scattering from each of the structural units (molecular segments or crystallites) in an oriented polymer solid is determined by a symmetric second-rank tensor. The distribution of orientations of the principle axes of the tensors is expanded in a series of generalized spherical harmonics, Zlmn(θ)e?imψe?in?, and it is shown that relations among the coefficients in this expansion can be obtained from suitable intensity measurements using polarized radiation. If the orientation of the tensor axes within the structural unit is known (in the general case, for several Raman lines), then the coefficients Mlmn of a similar expansion for axes fixed in the units can be obtained for l, m, and n even and l ≤ 4. The limitation to even m follows from the assumption that the solid has at least orthotropic statistical symmetry but the limitations on n and l arise from the nature of the Raman effect. Some simple special cases are considered and some orientation-independent intensity sums are derived. It is shown that, with the simplifying assumption usually made, the theory of the polarized fluorescence method for determining molecular orientations is a special case of the theory for the Raman method.  相似文献   

18.
Application study for the evaluation of sorption characteristics of sawdust as an economical sorbent material used for decontamination of radioisotopes cesium and europium from aqueous solution has been carried out in the present work. In this respect, sawdust (untreated and treated by HNO3) has been prepared from the commercial processing of wood for furniture production. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption and DFT software. Radiotracer method onto sawdust from aqueous solutions was studied in a batch technique with respect to pH, contact time, temperature. The kinetics of adsorption of Eu3+ and Cs+ have been discussed using five kinetic models namely, pseudo-first-order model, pseudo-second-order model, Elovich equation, intraparticle diffusion model, and modified Freundlich equation that have been tested in order to analysis the experimental data. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the sorption kinetics for two metal ions. The metal uptake process was found to be controlled by intraparticle diffusion. Thermodynamic parameters, such as ΔH, ΔG and ΔS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures. The obtained results indicated that endothermic nature of sorption process for both 152+154Eu and 134Cs onto sawdust.  相似文献   

19.
An analytical method based on ion-interaction chromatography with UV detection for simultaneous in-vitro estimation of the percutaneous absorption of the most used water-soluble UV filters in sunscreen cosmetics is proposed. These UV filters were phenylbenzimidazole sulfonic acid, disodium phenyl dibenzimidazole tetrasulfonate, benzophenone-4, and terephthalylidene dicamphor sulfonic acid. The methodology is based on applying the sunscreen containing the target UV filters to human epidermis in a diffusion cell. Analytes are determined in the receptor solution. To ensure skin integrity, screening of the cells was carried out by analytical determination of a marker. Analytical variables such as percentage ethanol, concentration of ion-pairing agent, pH of the mobile phase, and temperature were studied in order to achieve high resolution of the chromatographic peaks in the lowest possible time of analysis. The conditions selected consisted of a mobile phase composed of 35:65 (v/v) ethanol–ammonium acetate buffer solution (pH 4, containing 50 mmol L−1 tetra-n-butylammonium bromide). The chromatographic determination was carried out with the analytical column at 50 °C. UV detection was carried out at the maximum absorption wavelength for each analyte. The limit of detection (3s y/x /b) ranged from 16 to 65 ng mL−1, depending on the analyte.  相似文献   

20.
The role of the grafting density of monofunctional polyfluoroalkylsilanes of the C n F2n − 1(CH2) m Si(CH3)2Cl general formula (where n = 3, 4, and 6; and m = 2 and 3) and their composition in intermolecular interactions of the molecules of saturated and aromatic hydrocarbons with a surface of chemically modified silica is studied by means of IR spectroscopy and adsorption-static and gas chromatography. It is shown that the higher the concentration and the shorter the length of the grafted chain, the greater (by a factor of 2 to 25) the drop in the adsorption values of hydrocarbons as a result of modifications, due to an increase in the degree of oleophobization of surface upon the formation of polyorganofluorine coatings. The high specificity of the surface with respect to benzene, which is due to the active participation of the polar fragment of a grafted chain in adsorption process, is related to the features of a relatively low-density sample with a concentration of grafted perfluorobutyl groups of 1.7 nm−2. It is shown that the thermodestruction of polyfluoroalkyl silica remains virtually unobserved upon heating to 523 K in an argon flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号