首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Monte-Carlo模拟方法对六边形、正方形和三角形晶格结构磁性薄膜的磁学特性及磁畴结构进行了模拟,结果表明,磁性薄膜的磁性特征及其磁相变温度和薄膜结构密切相关并存在临界膜厚,当薄膜厚度大于临界膜厚时薄膜磁性特征稳定.在低温区,不同结构磁性薄膜的磁滞回线均出现台阶现象,结果同相关实验一致.  相似文献   

2.
磁性薄膜研究的现状和未来   总被引:14,自引:0,他引:14  
戴道生 《物理》2000,29(5):262-269
概括介绍了近十几年来磁性薄膜研究的主要成果、应用和可能的发展情况,主要内容有:钙钛矿结构氧化物薄膜的磁性和庞磁电阻效应,磁性金属多层 膜的层间耦合和巨磁电阻效应及磁电阻磁头应用情况,光存储技术纳米点阵存储技术,磁电子学。  相似文献   

3.
张绍银  艾树涛 《光学学报》2019,39(8):307-314
结合干涉光刻和磁控溅射制备了一维周期性起伏的磁性多层薄膜。利用扫描探针显微镜对样品的微结构进行表征,利用椭偏仪和磁光测量系统对样品的光学性能参数和磁光克尔效应进行测试和研究。实验结果发现,磁性多层薄膜磁光性能得到极大的提升,磁光增强的克尔谱峰值与条带的宽度、中间层二氧化铪层的厚度有关;利用介质层的厚度可调制复合薄膜的磁光特性。进一步研究发现横克尔效应的增强现象。理论计算的结果证实,磁光增强源于光学腔干涉共振和磁等离激元的耦合效应。  相似文献   

4.
李绿洲  蒋继乐  卫荣汉  李俊鹏  田煜  丁建宁 《物理学报》2016,65(1):18103-018103
磁性材料被广泛应用于磁记录和磁润滑等领域,聚甲基丙烯酸甲酯因其良好的介电性,能够用作磁性材料的表面涂层.本文对外磁场作用下,外加载荷和磁场强度对往复滑动的聚甲基丙烯酸甲酯/磁性薄膜双膜系摩擦性能的影响开展了研究.实验结果表明:聚甲基丙烯酸甲酯/磁性双膜体系的摩擦性能随载荷和磁场强度改变而变化;但在干摩擦和硅油润滑两种模式下,磁场对其摩擦学性能的影响规律不同.理论分析了磁场作用下磁场诱发的磁性力与摩擦副物理性质变化对摩擦力和摩擦系数的影响,与实验结果符合良好.研究结果为磁性薄膜的界面介质设计与控制提供了依据.  相似文献   

5.
国际应用磁学(INTERMAG)会议的三个卫星会仪之一──第一届国际磁性材料物理会议,于1987年4月8-11日在日本仙台市召开.我国有近20名代表参加,是外国代表中人数最多的. 会议共有138篇论文,分七类:1.稀上永磁材料及非晶材料的磁性;2.薄膜;3.细粉末;4.无序及亚稳系统;5.磁各向异性及磁致伸缩;6.高频磁损耗;7.磁光、磁弹性波及新实验技术.其中有关薄膜的论文有48篇,占35%。软磁硬磁大块材料包括非晶合金及稀土永磁合金的文章数与薄膜文章数相比显得少得多.从这里可以看出人们对薄膜的兴趣日益增长. 为了降低软磁薄膜的磁致伸缩以改善磁性,人…  相似文献   

6.
由中国科学院磁学开放实验室筹备的全国薄膜磁性学术讨论会于1991年12月4日至6日在桂林召开.这次会议得到了国内七所高等院校、中国科学院三个研究所、三个部级研究所的有关方面的支持井有45名代表参加.会议共收到学术论文41篇. 磁性薄膜是磁学这一物理学分支中活跃的研究领域之一,它不仅具有学术上重要研究价值,而且与新技术发展如信息存储息息相关.尤其是近年来磁性超晶格膜和超高密度磁光存储盘问世,给磁性薄膜研究注入了强大的生命力.这次会议的主要内容正是交流和讨论了国内同行近年来在这些研究领域中所进行的研究工作.除了磁性超晶格…  相似文献   

7.
利用磁控溅射方法制备了不同厚度和退火处理的Ni薄膜.表面磁光克尔效应研究表明:冷基底无退火处理的Ni薄膜为软磁性,退火处理的Ni薄膜为铁磁性质,且无退火处理的Ni金属膜磁性随膜厚的增加而增强.分析认为,冷基底条件下Ni膜是非晶态生长,且膜内存有大量缺陷,经退火处理的Ni膜发生了重融再生长,形成了大颗粒结晶,膜内晶粒内缺陷大量消失.  相似文献   

8.
本文报道了有关溅射氧化铁薄膜磁性能的系统研究,特别着重于矫顽力的温度依赖关系和矫顽力随不同氧化铁相的变化。从理论分析与实验测量结果的对比中,给出了形状各向异性、磁晶各向异性及应力各向异性各自对Fe3O4薄膜、γ-Fe2O3薄膜及二者混合相薄膜的贡献,并且得到了Fe3O4薄膜和γ-Fe2O3薄膜的磁晶各向异性常数K1的温度依赖关系曲线。 关键词:  相似文献   

9.
二维磁结构的扫描隧道显微术研究   总被引:1,自引:1,他引:0  
孙霞  王兵  王丽娟  吴自勤 《物理》2002,31(9):572-576
文章介绍了近年来利用扫描隧道显微术(STM)对表面和薄膜磁结构的研究进展。二维或表面磁结构可以通过在非磁性单晶上外延磁性单原子层薄膜形成,也可以在清洁的磁性单晶表面形成。利用磁性的STM针尖可以观测到原子分辨的表面磁结构。这将增进人们从纳米尺度对磁性的理解,并推动磁电子学的发展。  相似文献   

10.
斜向静磁场中光导波模式转换与衍射理论   总被引:2,自引:0,他引:2       下载免费PDF全文
刘公强  C.S.TSAI 《物理学报》1998,47(7):1213-1221
应用经典场论和耦合模理论计算了斜向静磁场作用下,磁性薄膜波导中静磁波与导波光的相互作用.计算结果表明,与垂直静磁场情形相比,斜向静磁场时的相匹配条件有所变化,由于磁性薄膜波导中法拉第磁光效应增强等因素,导波光的Bragg衍射效率得以显著增加.这有利于应用YIG等低损耗磁性薄膜做成高衍射效率的磁光波导器件,亦有利于降低Bi∶YIG等高比法拉第旋转的磁光薄膜波导器件的体积和损耗.此外,理论指出的在斜向静磁场条件下所具有的一些磁光特性与实验结果亦符合得很好. 关键词:  相似文献   

11.
伍瑞新  陈平 《物理学报》2004,53(9):2915-2918
研究了利用磁性薄膜构造Salisbury屏的可能性及其在微波频段的反射率频率特性.结果表明,利用铁磁性材料在铁磁共振频率附近磁化率具有χ″>χ′的特性,可以构造出对电磁波有良好吸收性能的磁性Salisbury屏.通过对铁磁材料高频磁谱物理机理的分析后指出,具有弛豫型共振磁谱的铁磁材料可以构造出薄膜型Salisbury屏,其厚度为微米甚至亚微米量级.反射率的频率特性与磁性材料的特征阻抗z-r有关,它取决于铁磁共振频率和静态磁化率.反射率的频率响应显示磁性薄膜Salisbury屏具有较宽的吸收带宽. 关键词: 磁性Salisbury屏 反射率 频带响应 磁性薄膜  相似文献   

12.
FeCoBSiO2磁性纳米颗粒膜的微波电磁特性   总被引:6,自引:0,他引:6       下载免费PDF全文
采用交替沉积磁控溅射工艺制备了超薄多层的FeCoBSiO2磁性纳米颗粒膜.利用x射线衍射仪、扫描探针显微镜、透射电子显微镜分析了薄膜的微结构和形貌特征.采用振动样品磁强计、四探针法、微波矢量分析仪及谐振腔法测量薄膜试样的磁电性能和微波复磁导率.重点对SiO2介质相含量、薄膜微结构对电磁性能产生重要影响的机理做了分析和探讨.结果 表明:这类FeCoBSiO2磁性纳米颗粒膜具有良好的软磁性能和高频电磁性能,2GHz时的 磁导率μ′高于70,可以应用于高频微磁器件或微波吸收材料的设计. 关键词: 磁性纳米颗粒膜 高频特性 复磁导率 磁控溅射  相似文献   

13.
利用软x射线磁性圆二色(XMCD)吸收谱测得Fe/MgO膜不同磁化方向的轨道磁矩和自旋磁矩.实 验表明,沿铁单晶薄膜的不同方向,铁原子轨道磁矩的改变量达到600%以上,而自旋磁矩的 变化约50%,但原子的总磁矩没有如此大的改变.结合常规方法分析了铁薄膜的宏观磁各向异 性性质,半定量地获得磁矩与宏观各向异性能的关系,并对样品的磁矩和磁各向异性能进行 了比较. 关键词: x射线磁性圆二色 磁各向异性 磁性薄膜  相似文献   

14.
FeCoB-SiO2磁性纳米颗粒膜的微波电磁特性   总被引:5,自引:0,他引:5       下载免费PDF全文
采用交替沉积磁控溅射工艺制备了超薄多层的FeCoB SiO2 磁性纳米颗粒膜 .利用x射线衍射仪、扫描探针显微镜、透射电子显微镜分析了薄膜的微结构和形貌特征 .采用振动样品磁强计、四探针法、微波矢量分析仪及谐振腔法测量薄膜试样的磁电性能和微波复磁导率 .重点对SiO2 介质相含量、薄膜微结构对电磁性能产生重要影响的机理做了分析和探讨 .结果表明 :这类FeCoB SiO2 磁性纳米颗粒膜具有良好的软磁性能和高频电磁性能 ,2GHz时的磁导率 μ′高于 70 ,可以应用于高频微磁器件或微波吸收材料的设计  相似文献   

15.
基于磁二色效应的光发射电子显微镜磁成像技术是研究薄膜磁畴结构的一种重要研究手段,具有空间分辨率高、可实时成像以及对表面信息敏感等优点.以全固态深紫外激光(波长为177.3 nm;能量为7.0 eV)为激发光源的光发射电子显微技术相比于传统的光发射电子显微镜磁成像技术(以同步辐射光源或汞灯为激发源),摆脱了大型同步辐射光源的限制;同时又解决了当前阈激发研究中由于激发光源能量低难以实现光电子直接激发的技术难题,在实验室条件下实现了高分辨磁成像.本文首先对最新搭建的深紫外激光-光发射电子显微镜系统做了简单介绍.然后结合超高真空分子束外延薄膜沉积技术,成功实现了L10-FePt垂直磁各向异性薄膜的磁畴观测,其空间分辨率高达43.2 nm,与利用X射线作为激发源的光发射电子显微镜磁成像技术处于同一量级,为后续开展高分辨磁成像提供了便利.最后,重点介绍了在该磁成像技术方面取得的一些最新研究成果:通过引入Cr的纳米"台阶",成功设计出FePt的(001)与(111)双取向外延薄膜;并在"台阶"区域使用线偏振态深紫外激光观测到了磁线二色衬度,其强度为圆二色衬度的4.6倍.上述研究结果表明:深紫外激光-光发射电子显微镜磁成像技术在磁性薄膜/多层膜体系磁畴观测方面具备了出色的分辨能力,通过超高真空系统与分子束外延薄膜制备系统相连接,可以实现高质量单晶外延薄膜制备、超高真空原位传输和高分辨磁畴成像三位一体的功能,为未来磁性薄膜材料的研究提供了重要手段.  相似文献   

16.
韩秀峰 《物理》2008,37(6):392-399
文章介绍了作者所在实验室在巨磁电阻(GMR)、隧穿磁电阻(TMR)、庞磁电阻(CMR)和反铁磁钉扎薄膜材料以及单晶金属氧化物、高自旋极化率材料、P-N异质结和纳米环磁随机存储器原理型演示器件设计等研究方面取得的一些重要研究成果和进展.例如:在Al-O势垒磁性隧道结材料体系里,获得室温磁电阻超过80%的国际最好结果;获得两种高性能层状反铁磁钉扎材料体系;发现具有大的电致电阻效应的CMR薄膜材料,并可期望用于电流直接进行磁信息写和读操作的磁存储介质;发现双势垒磁性隧道结中的量子阱态共振隧穿和磁电阻振荡效应,以及纳米器件体系中自旋翻转长度的观测新方法,可用于新型自旋电子学材料及相关器件的人工辅助设计;利用电子自旋共振谱探测和研究了金属氧化物的微观自旋结构和各向异性;在[CoFe/Pt]n磁性金属多层膜中,观测到超高灵敏度的反常霍尔效应;利用纳米环状磁性隧道结作为存储单元,研制出一种新型纳米环磁随机存储器MRAM原理型演示器件.  相似文献   

17.
Nd28Fe66B6/Fe50Co50双层纳米复合膜的结构和磁性   总被引:2,自引:0,他引:2       下载免费PDF全文
利用磁控溅射法制备了Nd28F66B6/Fe50Co50双层纳米复合磁性薄膜,研究了其结构和磁性.经873K退火处理15min后,利用x射线衍射仪测定薄膜晶体结构,采用俄歇电子能谱仪估算薄膜厚度和超导量子干涉仪测量其磁性.磁性测量表明,1)该系列薄膜具有垂直于膜面的磁各向异性.从起始磁化曲线和小回线的形状特征可知,矫顽力机制主要是由畴壁钉扎控制.2)对于固定厚度(10nm)层的硬磁相Nd-Fe-B和不同厚度(dFeCo=1-100nm)层软磁相FeCo双层纳米复合膜,剩磁随软磁相FeCo厚度的增加快速增加,而矫顽力则减少.当dFeCo=5nm时,最大磁能积达到160×103A/m.磁滞回线的单一硬磁相特征说明,硬磁相Nd-Fe-B层和软磁相FeCo层之间的相互作用使两相很好地耦合在一起.剩磁和磁能积的提高是由于两相磁性交换耦合所致.  相似文献   

18.
 1 复旦研制半磁半导体薄膜据《研究进展简报》报道,复旦大学表面物理国家重点实验室采用简单国产设备,建立一套热壁外延装置,成功地在GaAs衬底上生长出Zn1-xMnxSe半磁半导体薄膜,用X射线衍射、喇曼散射和俄歇电子能谱分析,表明薄膜的晶体质量良好,磁性元素Mn的含量最高可超过15%,填补了国内这方面的空白.样品已提供有关单位进行各种磁性测量和基础研究.2 物理学家郑志鹏教授被任命高能所所长据《情况简报》报道,中国物理学家郑志鹏教授被中国科学院任命为中科院高能物理研究所所长,王书鸿、徐绍旺、马彤军、赵维仁先生被任命为副所长.  相似文献   

19.
铁磁/非铁磁/铁磁层状薄膜的巨磁阻抗效应的计算   总被引:4,自引:0,他引:4       下载免费PDF全文
基于文献[17]和[18]提出的铁磁非铁磁铁磁层状薄膜的电磁模型,详细研究了层状薄膜的巨磁阻抗增强效应,以及磁性层和非磁性层厚度与层状薄膜的巨磁阻抗效应的关系.分析表明,铁磁层和非铁磁层薄膜的电阻率相差越大,越有利于获得显著的巨磁阻抗效应;对于总厚度要求一定的层状薄膜,铁磁层和非铁磁层薄膜存在一最佳厚度 关键词: 巨磁阻抗效应 磁性薄膜 趋肤效应  相似文献   

20.
竺云  韩娜 《物理学报》2012,61(16):167505-167505
制备了CoFe/Pd双层结构的界面处或CoFe层 内部引入纳米氧化层后的系列薄膜. 研究结果显示, 引入纳米氧化层后, 可以使薄膜的磁各向异性在退火后从面内转到垂直膜面方向. 并且对于在CoFe层内部引入纳米氧化层的这类样品, 其强烈的垂直磁性可以在相当宽的有效磁性层厚度范围内(1.2-2 nm)维持. 在保持垂直磁性的前提下, 这种特殊的双层膜结构中CoFe磁性层厚度比常规CoFe/Pd 多层膜中的CoFe层厚度至少多出1.4 nm. 本文的研究有助于制备出具有较高热稳定性的垂直磁性器件电极.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号