首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Zhu CQ  Zhuo SJ  Zheng H  Chen JL  Li DH  Li SH  Xu JG 《The Analyst》2004,129(3):254-258
A fluorescence enhancement method with a cationic cyanine as a probe was developed for the determination of nucleic acids. Under the experimental conditions, the fluorescence enhancement of cyanine (lambda(ex)/lambda(em)= 524/591.5 nm) was observed in the presence of DNA. The calibration graphs were linear over the range of 0.01-15 microg mL(-1) for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA). The limits of detection were 0.005 and 0.007 microg mL(-1) for CT DNA and FS DNA, respectively. The method was applied to the determination of DNA in synthetic and real samples and satisfactory results were obtained. A possible fluorescence enhancement mechanism was also studied.  相似文献   

2.
A new method with a cationic near-IR cyanine as fluorescent probe was developed for the determination of nucleic acids. The near-IR cyanine shows maximum excitation and emission wavelengths at 765 and 790 nm, respectively, in aqueous solution. The method is based on the fluorescence decrease of near-IR cyanine in the presence of nucleic acids. Under optimal conditions, the ratio of fluorescence intensity in the absence and presence of nucleic acids was proportional to the concentration of nucleic acids over the range 0.10-1.2 microg/mL for CT (calf thymus) DNA or SM (salmon sperm) DNA, and 0.10-1.6 microg/mL for yeast RNA. The detection limits were 30 ng/mL for CT DNA, 25 ng/mL for SM DNA and 70 ng/mL for yeast RNA. The relative standard deviation (n = 6) was 2.1% for 500 ng/mL CT DNA, 2.4% for 500 ng/mL SM DNA and 2.7% for 500 ng/mL yeast RNA, respectively.  相似文献   

3.
Novel fluorescent colloids as a DNA fluorescence probe   总被引:1,自引:0,他引:1  
Fluorescent perylene colloids in the 80–90 nm size range have been prepared by the reprecipitation method. These nanoparticles were modified by cetyltrimethylammonium bromide (CTAB) which inhibited their growth. The nanoparticles also readily interacted with DNA. The fluorescence emission was measured at ex/em=400/565 nm. The fluorescence decrease of colloid–CTAB in aqueous solution was measured in the presence of nucleic acids. Under the optimum conditions, the ratio of fluorescence intensity in the absence and presence of nucleic acids was proportional to the concentration of nucleic acids over the range 0.02–5.1 µg mL–1 for FS (fish sperm) DNA or CT (calf thymus) DNA. The detection limits were 0.01 µg mL–1 for FS DNA and 0.012 µg mL–1 for CT DNA, respectively. Based on this approach, a new quantitative method for DNA assay is presented in this paper.  相似文献   

4.
A near-infrared (near-IR) fluorescence quenching method was developed for the determination of nucleic acids in aqueous solution by using a cationic heptamethylene thiacyanine as a probe. The near-IR cationic cyanine showed maximum excitation and emission wavelengths at 800 and 825 nm, respectively, in the presence of Triton X-100; the fluorescence of the cyanine could be greatly quenched by DNA. The calibration graphs were linear over the range of 10-400 ng/mL for CT (calf thymus) DNA and over the range 5-400 ng/mL for FS (fish sperm) DNA under optimal conditions. The corresponding detection limits were 5.2 ng/mL for CT DNA and 2.5 ng/mL for FS DNA. The relative standard deviation (n = 8) was 3.1% for 75 ng/mL CT DNA and 2.2% for 75 ng/mL FS DNA, respectively. Preliminary research showed that the fluorescence quenching might be ascribed to the formation of dye aggregate facilitated by DNA.  相似文献   

5.
Using the oxidation reaction between hydrogen peroxide and dl-tyrosine as fluorescence indication, the evident tuning effect of nucleic acids on catalytic activity of mimetic enzyme iron (III) tetracarboxy phthalocyanine (FeC4Pc) in the presence of poly-lysine was observed and studied. The oxidation reaction between hydrogen peroxide and dl-tyrosine with FeC4Pc as catalyst gave an intensively fluorescent compound, which has an excitation wavelength of 325 nm and an emission wavelength of 418 nm. The fluorescence was quenched by a proper concentration of poly-lysine due to its association with FeC4Pc and consequently the descent of the catalytic activity of FeC4Pc, but recovered by addition of nucleic acids. Under optimal conditions, the recovered fluorescence is proportional to the concentration of nucleic acids. Based on the fact, a kinetic fluorescent method was developed for the determination of nucleic acids. The calibration graphs are linear over the range 10-2000 ng/mL both for fish sperm DNA (FS DNA) and calf thymus DNA (CT DNA). The corresponding detection limits are 1.04 ng/mL for FS DNA and 1.18 ng/mL for CT DNA, respectively. Four synthetic and three real nucleic acid samples were determined with satisfactory results.  相似文献   

6.
A new method with a cationic near-IR cyanine as fluorescent probe was developed for the determination of nucleic acids. The near-IR cyanine shows maximum excitation and emission wavelengths at 765 and 790 nm, respectively, in aqueous solution. The method is based on the fluorescence decrease of near-IR cyanine in the presence of nucleic acids. Under optimal conditions, the ratio of fluorescence intensity in the absence and presence of nucleic acids was proportional to the concentration of ¶nucleic acids over the range 0.10–1.2 μg/mL for CT (calf thymus) DNA or SM (salmon sperm) DNA, and 0.10–¶1.6 μg/mL for yeast RNA. The detection limits were ¶30 ng/mL for CT DNA, 25 ng/mL for SM DNA and ¶70 ng/mL for yeast RNA. The relative standard deviation (n = 6) was 2.1% for 500 ng/mL CT DNA, 2.4% for ¶500 ng/mL SM DNA and 2.7% for 500 ng/mL yeast RNA, respectively.  相似文献   

7.
A new method for the determination of nucleic acids has been developed based on the enhancement effect of resonance light scattering (RLS) with a cationic near infrared (NIR) cyanine dye. Under the optimal conditions, the enhanced RLS intensity at 823 nm is proportional to the concentration of nucleic acids in the range of 0-400 ng mL-1 for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA), 0-600 ng mL-1 for snake ovum RNA (SO RNA). The detection limits are 3.5 ng mL-1, 3.4 ng mL-1 and 2.9 ng mL-1 for CT DNA, FS DNA and SO RNA, respectively. Owing to performing in near infrared region, this method not only has high sensitivity endowed by RLS technique but also avoids possible spectral interference from background. It has been applied to the determination of nucleic acids in synthetic and real samples and satisfactory results were obtained.  相似文献   

8.
Zhuo SJ  Zheng H  Chen JL  Li DH  Wu YQ  Zhu CQ 《Talanta》2004,64(2):528-533
A new method was developed for determination of micro amounts of nucleic acids based on near-infrared (near-IR) fluorescence recovery, employing a two-reagent system which is composed of an anionic tetracarboxy aluminum phthalocyanine (AlC4Pc) and a cationic tetra-N-hexadecylpyridiniumyl porphyrin (TC16PyP). The fluorescence of the AlC4Pc, with the maximum emission wavelength at 701 nm, could be quenched by TC16PyP at its proper concentration, but recovered by adding nucleic acids. Under optimal conditions, the recovered fluorescence is proportional to the concentration of nucleic acids. The calibration graphs are linear over the range of 1-200 ng mL−1 for fish sperm DNA (FS DNA) and 2-400 ng mL−1 for calf thymus DNA (CT DNA). The corresponding detection limits are 0.59 ng mL−1 for FS DNA and 0.82 ng mL−1 for CT DNA, respectively. Four synthetic and three real nucleic acid samples were determined with satisfactory results.  相似文献   

9.
Wei Q  Zhang H  Duan C  Li Y  Du B 《Annali di chimica》2006,96(5-6):273-284
In Tris-HCl buffer (pH 8.0), the fluorescence of Pyronine G emitted at 552 nm was quenched by nucleic acids when excited at 525 nm. Adding N, N-dimethylformamide (DMF) as a sensitive media can enhance the sensitivity greatly. Based on the fluorescence reactions sensitive fluorimetric methods for nucleic acids at nanogram levels were proposed. Under the optimum conditions, the calibration curves were linear in the range of 0.0032 - 2.5 microg mL(-1) for ct DNA and 0.0024 - 2.5 microg mL(-1) for hs DNA. The limits of determination were 3.2 ng mL(-1) and 2.4 ng mL(-1) respectively. This method has good selectivity and high sensitivity. It has been applied to the determination of DNA in the synthetic samples and real samples with satisfactory results.  相似文献   

10.
A new method based on near-infrared (near-IR) fluorescence recovery was presented for the determination of nucleic acids. This method employed a two-reagent system composed of anionic tetracarboxy aluminum phthalocyanine (AlC4Pc) and polycationic poly-lysine. The fluorescence of AlC4Pc, with the maximum excitation and emission wavelengths at 620 and 701 nm, respectively, was quenched by poly-lysine with a proper concentration, but recovered by adding nucleic acids. Under optimal conditions, the recovered fluorescence was in proportional to the concentration of nucleic acids. The linear ranges of the calibration curves were 5-200 ng mL(-1) for both calf thymus DNA (ctDNA) and fish sperm DNA (fsDNA) with the detection limit of 2.6 ng mL(-1) for ctDNA and 2.1 ng mL(-1) for fsDNA. The relative standard deviation (n = 6) was 1.9 and 1.3% for 50 ng mL(-1) ctDNA and fsDNA, respectively. The proposed method was applied to the determination of nucleic acids in synthetic samples with satisfactory results.  相似文献   

11.
Because the fluorescence of azur A can be quenched by adding nucleic acid, a sensitive fluorometric method for determination of nucleic acids at nanogram levels was established. Using optimal conditions, the calibration curves were linear in the range of 0-6.0 microg/mL for calf thymus deoxyribonucleic acid (ct DNA) and 0-7.0 microg/mL for herring sperm DNA (hs DNA). The limits of determination were 3.5 and 3.8 ng/mL, respectively, which shows the high sensitivity of this method. Triton X-100 microemulsion was applied as a sensitive media to enhance the sensitivity. The binding mode concerning the interactions of azur A with nucleic acids was also studied and the association constant with different binding numbers was obtained. The method has been applied to the determination of nucleic acid in both synthetic and real samples, such as cauliflower and pork liver, with satisfactory results.  相似文献   

12.
Cysteine-capped ZnS nanometer-sized fluorescent particles were produced by a colloidal aqueous synthesis. The functionalized nanoparticles are water-soluble and suitable for biological application. A synchronous fluorescence method has been developed for the rapid determination of DNA with functionalized nano-ZnS as a fluorescence probe, based on the synchronous fluorescence enhancement of cysteine-capped nano-ZnS in the presence of DNA. When Deltalambda =190 nm, maximum synchronous fluorescence is produced at 267 nm at pH 5.12. Under optimum conditions, the synchronous fluorescence intensity is proportional to the concentration of nucleic acids in the range 0.1-1.2 microg ml(-1) for calf thymus DNA, 0.1-0.6 microg ml(-1) for fish sperm DNA. The corresponding detection limit is 32.9 ng ml(-1) for calf thymus DNA and 24.6 ng ml(-1) for fish sperm DNA. This method is simple, inexpensive, rapid and sensitive. The recovery and relative standard deviation are satisfactory.  相似文献   

13.
基于酶催化反应的核酸定量新方法   总被引:1,自引:0,他引:1  
近年来 ,将染料自缔合或诱导缔合用于核酸定量测定备受关注 [1~ 3 ] .但是将酶与染料的缔合用于核酸定量测定尚未见报道 .氯化血红素 (hemin)可作为辣根过氧化物酶 (HRP)的模拟酶 ,能催化 H2 O2氧化对 -羟基苯乙酸 (p- HPA)生成荧光产物——联二对 -羟基苯乙酸的反应 [4 ,5] .由于 hemin在碱性介质中是阴离子化合物 ,能与阳离子化合物如阿尔新蓝 (Alcian Blue 8GX)发生缔合作用 ,从而使自身的催化性质被抑制 .当加入带负电荷的脱氧核糖核酸 (DNA)时 ,由于阿尔新蓝与 DNA的强烈作用使hemin与阿尔新蓝的缔合物被破坏 ,hemin的催化活…  相似文献   

14.
Z Zhu 《Analytical sciences》2001,17(12):1375-1377
A novel fluorometric method has been developed for rapid determination of DNA and RNA with calcein-neodymium complex as a fluorescence probe. The method is based on the fluorescence enhancement of calcein-Nd(III) complex in the presence of DNA or RNA, with maximum excitation and emission wavelength at 489 nm and 514 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.5 - 3.0 microg/ml for both DNA and yeast RNA, 0.4 - 2.0 microg/ml for fish sperm DNA (FS DNA) and 0 - 3.0 microg/ml for calf thymus DNA (CT DNA). The corresponding detection limits are 15.1 ng/ml for DNA, 21.2 ng/ml for yeast RNA, 10.5 ng/ml for FS DNA and 8.9 ng/ml for CT DNA. The interaction mechanism for the binding of calcein-Nd(III) complex to DNA is also studied. The results of absorption spectra, fluorescence polarization measurements and thermal denaturation experiments, suggested that the interaction between calcein-Nd(III) complex and DNA is an electrostatic interaction.  相似文献   

15.
Using a common spectrofluorometer to measure the intensity of Rayleigh light-scattering (RLS), a method for determination of nucleic acids has been developed. At pH 10.24 and ionic strength 0.01 mol l-1 (NaCl), the Rayleigh light-scattering of the tetra-(N-hexadecylpyridiniumyl) porphyrin (TC16PyP) is greatly enhanced by nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB), with the scattering peak located at 311.8 nm. The enhanced RLS intensity is in proportion to the concentration of calf thymus DNA (ctDNA) in the range 0.2-6.0 microg ml-1 and to that of fish sperm DNA (fsDNA) in the range 0.05-3.0microg ml-1. The limits of detection are 0.016 microg ml-1 for calf thymus DNA and 0.023 microg ml-1 for fish sperm DNA when the concentration of TPP was chosen 2.0 x 10(-6) mol l-1. Four synthetic samples were determined satisfactorily.  相似文献   

16.
Sun W  You J  Gong C  Jiao K 《Annali di chimica》2006,96(5-6):259-271
In this paper, the interaction of brilliant cresyl blue (BCB) with nucleic acids was studied and further applied for the microdetermination of nucleic acids. In aqueous Britton-Robinson (B-R) buffer solution, BCB can be easily reduced on the hanging mercury drop electrode (HMDE) and had a sensitive voltammetric reduction peak at -0.09 V (vs. SCE). The reduction peak current of BCB could be greatly decreased by the addition of DNA. The results of voltammetric measurements had indicated that a binding reaction was occurred between BCB and DNA and a new supramolecular complex was formed, which resulted in the decrease of the diffusion coefficient of the reaction solution and the decrease of the reduction peak current correspondingly. The conditions of interaction and the electrochemical detection were carefully investigated. Under the selected conditions, the calibration curves for the detection of fish sperm (fs)DNA, calf thymus (ct)DNA and yeast (y)RNA were established. The linear range of this assay was 1.0-30.0 microg/mL for fsDNA, 1.0-45.0 microg/mL for ctDNA and 1.0-25.0 microg/mL for yRNA, respectively. The detection limits were 0.38 microg/mL fsDNA, 0.43 microg/mL ctDNA, 0.64 microg/mL yRNA. The interaction parameters such as the equilibrium constant and the binding number were calculated by electrochemical method. The results showed that the 2:3 type of complex was formed in the fsDNA-BCB complex with the binding constant as 2.51 x 10(7). The proposed method was further applied to the synthetic samples determination with satisfactory results.  相似文献   

17.
The interaction of bleomycinA5 with nucleic acids has been investigated by using resonance Rayleigh scattering (RRS), molecular absorption and fluorescence spectra. The result shows that in near pH 2.2 buffer medium and absence of any metal ions, nucleic acids are capable of binding with bleomycinA5 (BLMA5) to form complexes which can remarkably enhance the RRS intensity and result in batho- chromic and hyperchromic molecular absorption of nucleic acids and fluorescence quenching of bleomycinA5. The RRS spectral characteristics for the binding products of bleomycinA5 with various DNA and RNA are similar, and the maximum RRS peaks are at 301 nm for ctDNA and sDNA, 370 nm for hsDNA, 310 nm for RNAtypeVI and RNAtypeIII, respectively. The increments of RRS intensity are greatly different in which DNA enhances greatly and RNA enhances lightly. In this work, the optimum condi- tions of the interaction and some influencing factors have been investigated. The reaction mechanism and a binding model for the interaction of BLMA5 with the nucleic acids are discussed. In addition, a highly sensitive, simple and rapid new method for the determination of DNA has been developed. The detection limits (3σ) are 5.7 ng/mL for ctDNA, 7.4 ng/mL for sDNA and 9.2 ng/mL for hsDNA, respectively. The method can be applied to determination of trace amounts of DNA.  相似文献   

18.
In buffer medium of hexamethylene tetraamine-HCl at pH 5.9 the aluminium(III) complex with salicylidene-o-aminophenol (SAP) has a fluorescence peak at 508 nm with excitation at 410 nm. When nucleic acid coexists, it reacts with the complex within 8 min at room temperature to produce a non-fluorescent product, resulting in the decrease of fluorescence intensity of the aluminium complex. On basis of this, a new fluorometric method for nucleic acids determination is proposed. The calibration graphs for calf thymus DNA, fish sperm DNA and yeast RNA are linear up to 5.0, 4.0 and 3.0 microg ml(-1), respectively, and corresponding detection limits are 49, 52 and 62 ng ml(-1). The synthetic samples are analyzed with relative standard deviation of five measurements of 3.9-6.0%. DNA in an extraction product from human blood is determined using the calibration graph for calf thymus DNA, and the result is very close to that by the ethidium bromide assay. Compared with some established fluorometric methods, this procedure is sensitive, selective, reliable, reproducible and practical. The association constant of calf thymus DNA with the complex is estimated by two graphic methods. It is suggested that the binding reaction between nucleic acids with the complex proceeds in an intercalation way.  相似文献   

19.
A fluorescence quenching method was developed for the rapid determination of DNA and RNA using magdala red as fluorescence probe. In weakly acidic medium, the fluorescence of magdala red (lambdaex/lambdaem = 540/555 nm) can be largely quenched by DNA or RNA. The calibration graphs are linear over the range 0.01-1.2 microg/mL for both calf thymus DNA (CT DNA) and salmon DNA (SM DNA), and 0.015-1.0 microg/mL for yeast RNA, respectively. The corresponding detection limits are 6.0 ng/mL for CT DNA, 7.0 ng/mL for SM DNA and 15.0 ng/mL for yeast RNA, respectively. CT DNA could be determined in the presence of 20% (w/w) yeast RNA, and the relative standard deviation of six replicate measurements is 3.18% for 400 ng/mL of CT DNA. Interference from coexisting substances in the determination of DNA was also examined. Real samples were determined with satisfactory results.  相似文献   

20.
It is found that nucleic acids can enhance the fluorescence intensity of yttrium(III) (Y(3+))-rutin in presence of cetyltrimethylammonium bromide (CTMAB) system. In hexamethylenetetramine (HMTA)-HCl buffer, the maximum enhanced fluorescence is produced, with maximum excitation and emission wavelengths at 452 and 520 nm, respectively. Based on this, a new fluorimetric method of determination of nucleic acids is proposed. Under optimum conditions, the enhanced fluorescence intensity is proportion to the concentration of nucleic acids in the range of 1.0 x 10(-7) to 1.0 x 10(-5)g/ml for fish sperm DNA (fsDNA), 1.0 x 10(-7) to 4.6 x 10(-6)g/ml for yeast RNA (yRNA), their detection limits (S/N=3) are 7.5 x 10(-8), 8.0 x 10(-8)g/ml, respectively. The interaction mechanism is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号