首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel sandwich assay with molecular beacons as report probes has been developed and integrated into one-dimensional microfluidic beads array (1-D chip) to pursue a label-free and elution-free detection of DNA/mRNA targets. In contrast with the immobilized molecular beacons, this sandwich assay can offer lower fluorescence background and correspondingly higher sensitivity. Furthermore, this sandwich assay on 1-D chip operating in conjunction with molecular beacon technique allows multiple targets detection without the need of laborious and time-consuming elution, which makes the experiment process simple, easy to handle, and reproducible results. In the experiment, the synthesized DNA targets with different concentrations were detected with a detection limit of ∼0.05 nM. Moreover, the mRNA expression changes in A549 cells before and after anticancer drug 5-flouorouracil treatments were detected and the results were validated by the conventional RT-PCR method.  相似文献   

2.
Zhang H  Yang X  Wang K  Tan W  Zhou L  Zuo X  Wen J  Chen Y 《Electrophoresis》2007,28(24):4668-4678
The application of a 1-D microfluidic beads array that is composed of individually addressable functionalized SiO2 beads has been demonstrated for detection of single-base mutations based on "sandwich" hybridization assay without additional sample labeling and PCR amplification. We concentrated on detection of mutations in the human p53 tumor suppressor gene with more than 50% mutation frequency in the known human cancers. Using a microinjection system, functionalized beads could be selectively and linearly arrayed in a single microfluidic channel comprising many periodic chambers. This 1-D microfluidic beads array was sufficiently sensitive to identify single-nucleotide mutations in 40 pM quantities of DNA targets and could discriminate the mutated alleles in an excess of nonmutated alleles at a level of one mutant in 100 wild-type sequences. The surface of beads was regenerated and rehybridized up to six times without obvious loss of signal. The entire reaction process was done at room temperature within minutes, and only 2-10 microL sample solution was needed to complete the whole detection process. The p53 genotypes of A549, CNE2, and SKBr-3 cell lines were also correctly evaluated by using mRNA extracts as target without need for sample labeling and amplification. Thus, this platform enabled rapid and exact discrimination of gene mutations with the advantages of reusability, simple handling of liquid, low cost, and little reagent consumption.  相似文献   

3.
Chen B  Zhou X  Li C  Wang Q  Liu D  Lin B 《Journal of chromatography. A》2011,1218(14):1907-1912
We herein present a compact disc (CD) microfluidic chip based hybridization assay for phenylketonuria (PKU) screening. This CD chip is composed of a polydimethylsiloxane (PDMS) top layer containing 12 DNA hybridization microchannels, and a glass bottom layer with hydrogel pad conjugated DNA oligonucleotides. Reciprocating flow was generated on the CD chip through a simple rotation-pause operation to facilitate rapid DNA hybridization. When rotated the CD chip, the sample solution was driven into the hybridization channel by centrifugal force. When stopped the CD chip, the sample plug was pulled backward through the channel by capillary force. The hybridization assay was firstly validated with control samples and was then used to analyze 30 clinical samples from pregnant women with suspected PKU fetus. The on-chip DNA hybridization was completed in 15 min with a sample consumption as low as 1.5μL, and the limit-of-detection (LOD) of DNA template was 0.7ng/μL. Among the 30 samples tested, V245V mutation was identified in 4 cases while R243Q mutation was detected in one case. Results of the hybridization assay were confirmed by DNA sequencing. This CD-chip based hybridization assay features short analysis time, simple operation and low cost, thus has the potential to serve as the tool for PKU screening.  相似文献   

4.
A disposable single use polymer microfluidics chip has been developed and manufactured by micro injection molding. The chip has the same outer dimensions as a standard microscope slide (25 x 76 x 1.1 mm) and is designed to be compatible with existing microscope slide handling equipment like microarray scanners. The chip contains an inlet, a 10 microL hybridization chamber capable of holding a 1000 spot array, a waste chamber and a vent to allow air to escape when sample is injected. The hybridization chamber ensures highly homogeneous hybridization conditions across the microarray. We describe the use of this chip in a flexible setup with fluorescence based detection, temperature control and liquid handling by computer controlled syringe pumps. The chip and the setup presented in this article provide a powerful tool for highly parallel studies of kinetics and thermodynamics of duplex formation in DNA microarrays. The experimental setup presented in this article enables the on-chip microarray to be hybridized and monitored at several different stringency conditions during a single assay. The performance of the chip and the setup is demonstrated by on-line measurements of a hybridization of a DNA target solution to a microarray. A presented numerical model indicates that the hybridization process in microfluidic hybridization assays is diffusion limited, due to the low values of the diffusion coefficients D of the DNA and RNA molecules involved.  相似文献   

5.
6.
With the complete sequencing of the human genome, there is a growing need for rapid, highly sensitive genetic mutation detection methods suitable for clinical implementation. DNA-based diagnostics such as single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are commonly used in research laboratories to screen for mutations, but the slab gel electrophoresis (SGE) format is ill-suited for routine clinical use. The translation of these assays from SGE to microfluidic chips offers significant speed, cost, and sensitivity advantages; however, numerous parameters must be optimized to provide highly sensitive mutation detection. Here we present a methodical study of system parameters including polymer matrix, wall coating, analysis temperature, and electric field strengths on the effectiveness of mutation detection by tandem SSCP/HA for DNA samples from exons 5-9 of the p53 gene. The effects of polymer matrix concentration and average molar mass were studied for linear polyacrylamide (LPA) solutions. We determined that a matrix of 8% w/v 600 kDa LPA provides the most reliable SSCP/HA mutation detection on chips. The inclusion of a small amount of the dynamic wall-coating polymer poly-N-hydroxyethylacrylamide in the matrix substantially improves the resolution of SSCP conformers and extends the coating lifetime. We investigated electrophoresis temperatures between 17 and 35 degrees C and found that the lowest temperature accessible on our chip electrophoresis system gives the best condition for high sensitivity of the tandem SSCP/HA method, especially for the SSCP conformers. Finally, the use of electrical fields between 350 and 450 V/cm provided rapid separations (<10 min) with well-resolved DNA peaks for both SSCP and HA.  相似文献   

7.
Direct and efficient label-free voltammetric detection of glutathione S-transferase Pi 1 (GSTP1) hypermethylation is reported using a custom-developed 16-channel microelectrode array chip. The microelectrode array chip is used in a dipstick configuration allowing detection of DNA hybridization in a solution volume of only 0.35?mL. Platinum microelectrode disks (n?=?16) 30?µm in diameter have been modified with a polypyrrole bilayer before any contact with the oligonucleotides. The attachment of 15-mer Probe DNA to the bilayer is random but controlled by the presence of aliphatic tether groups allowing it to form a bidentate complex with the probe DNA. The voltammetric detection procedure of methylated GSTP1-specific target DNA is combined with bisulfite treatment of target DNA. Changes at the interface of the modified microelectrodes in an array configuration are used to record simultaneously cyclic voltammetry on all of the devices. The detection of hybridization is evaluated statistically by a yes or no event by comparing the changes in recorded cyclic voltammograms before and after exposure to the target DNA. All cyclic voltammograms of the methylated target show a greater percentage change than those with the nonmethylated target exposure and show a greater change in cyclic voltammogram area after methylated target exposure. We observe an average percentage difference of 25.6?±?4.9% with a variation of 19.1%. These results demonstrate that the fast sensing strategy possesses sensitivity and good specificity. Furthermore, this technology can potentially support rapid, accurate diagnosis and risk assessment of patients with prostate cancer.  相似文献   

8.
We report a simple assay for visual detection of single nucleotide polymorphisms (SNPs) with good sensitivity and selectivity. The selectivity is determined by Escherichia coli (E. coli) DNA ligase mediated circular formation upon recognition of the point mutation on DNA targets. Rolling cycle amplification (RCA) of the perfect-matched DNA target is then initiated using the in situ formed circular template in the presence of Phi29 enzyme. Due to amplification of the DNA target, the RCA product has a tandem-repeated sequence, which is significantly longer than that for the SNP strand. Direct addition of a cationic conjugated polymer of poly[9,9'-bis(6'-(N,N,N-trimethylammonium)hexyl)fluorene-co-9,9'-bis(2-(2-(2-(N,N,N-trimethylammonium)ethoxyl)-ethoxy)-ethyl)fluorene tetrabromide] containing 20 mol% 2,1,3-benzothiadiazole (PFBT(20)) into the RCA solution leads to blue-whitish fluorescent color for SNP strand and yellowish fluorescent color for amplified DNA, due to PFBT(20)/DNA complexation induced intrachain/interchain energy transfer. To further improve the contrast for visual detection, FAM-labeled peptide nucleic acid (PNA) was hybridized to each amplified sequence, which is followed by the addition of poly{2,7-[9,9-bis(6'-N,N,N-trimethylammoniumhexyl)]fluorene-co-2,5-difluoro-1,4-phenylene dibromide} (PFP). The PNA/DNA hybridization brings PFP and FAM-PNA into close proximity for energy transfer, and the solution fluorescent color appears green in the presence of target DNA with a detection limit of 1 nM, which is significantly improved as compared to that for most reported visual SNP assay.  相似文献   

9.
Ferrocenylnaphthalene diimide (FND)-based electrochemical hybridization assay was applied to the detection of methylated cytosine of DNA using the products obtained after treatment with bisulfite followed by polymerase chain reaction (PCR), where unmethylated cytosine is converted to thymine and methylated one to cytosine. Twenty-meric DNA probes for the methylated (cytosine) and unmethylated (thymine) types of the part of the promoter region of cyclin D-dependent protein kinase inhibitor, p16, gene (p16Ink4a) were used to be immobilized on the electrochemical array (ECA) chip. Using 1 μL of 10 ng/μL of methylated sample obtained from the methylation-specific PCR of methylated genome containing 10-times excess of unmethylated one, the methylated PCR sample could be detected by the identical electrochemical signals from the two DNA probes under the settled optimum hybridization conditions.  相似文献   

10.
Polymerization‐based signal amplification, a technique developed for use in rapid diagnostic tests, hinges on the ability to localize initiators as a function of interfacial binding events. We report here a new DNA detection method in which polymer growth in redox‐polymerization is used as a means to amplify detection signals. The introduction of biotin‐labeled chitosan (biotin‐CS) with highly dense amino groups into the polymerization amplification as macromolecular reducing agent, beneficially simplifies amplification operation, as well as, provides a large amount of initiation points to improve the sensitivity of detection. DNA hybridization, SA and biotin binding reactions led to the attachment of CS on a solid surface where specific DNA sequences were located. With the addition of the mixture containing monomer AM, crosslinker PEGDA and oxidant CAN onto the CS location, the growth of polymer films was triggered to render the corresponding spots readily distinguishable to the naked eye. Direct visualization of 0.21 fmol target DNA molecules of interest was demonstrated. Non‐small cell lung cancer p53 sequence was further selected as a proof‐of‐principle to detect DNA point mutation. The proposed method exhibited an efficient amplification performance for molecule detection, and paved a new way for visual diagnosis of biomolecules. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1929–1937  相似文献   

11.
Direct electrochemiluminescence (ECL) involving DNA was demonstrated in 10 nm films of cationic polymer [Ru(bpy)(2)(PVP)(10)](2+) assembled layer-by-layer with DNA. A square wave voltammetric waveform oxidized the Ru(II) sites in the metallopolymer to Ru(III), and ECL was measured simultaneously with catalytic voltammetric peaks in a simple apparatus. Significant ECL generation occurred only when guanine bases were present on oligonucleotides in the films. This result along with knowledge of proposed ECL pathways suggests that guanine radicals initially formed by catalytic oxidation of guanines by Ru(III) react with the metallopolymer to produce electronically exited Ru(II) sites in the film. ECL and catalytic SWV peaks were sensitive to oligonucleotide hybridization and chemical DNA damage. Simultaneous linear growth of ECL and SWV peaks occurred after incubation with known DNA damage agent styrene oxide over 20 min. The estimated detection limit was 1 damaged DNA base in 1000. Control incubations of metallopolymer/ds-DNA films in buffer containing unreactive toluene resulted in no significant changes of the ECL or SWV peaks.  相似文献   

12.
This paper discusses a new electrochemical DNA hybridization sensing approach based on the detection of a linked enzyme label. In this method we employ enzyme that is attached to a tethered ssDNA oligomer on the surface and the target analyte is a complementary ssDNA oligomer that does not require any pre‐treatment. The advantage of using of enzyme label is in its amplification of the registration of the hybridization event due to the catalytic reaction facilitated in the process. One particular novelty is associated with the use of enzymes that directly communicate with the electrode surface thus allowing for minimizing the need of additional reagents in the assay. The electrochemical assay was demonstrated when using mixed self‐assembled monolayers from thiolated oligonucleotide and 6‐mercapto 1‐hexanol on gold surfaces. Horseradish peroxidase (HRP) is attached to the surface tethered oligonucleotide using streptavidin‐biotin chemistry, and the enzyme successfully established direct electron transfer (DET) with the electrode or mediated electron transfer (MET) using a mediator. Hybridization results in increasing the angle of contact between electrode and DNA and also the stiffness of the ds DNA, which results in displacing the enzyme away from the electrode surface, and thereby reducing the occurrence of direct electron transfer between the enzyme and the electrode. The cyclic voltammetry showed a clear distinction in response between the complete complementary sequence and the two‐base mismatch sequence. Ellipsometric measurements show that the thickness of the thiol modified oligonucleotide on gold surfaces changes before and after hybridization for the complementary sequence, where as a minimal change in thickness was observed for the noncomplementary sequence. The model target analyte in this study was TP53 gene where a specific mutation is a marker for a list of cancers. Mutations of the TP53 gene have been demonstrated in tumors of the colon, breast, lung, ovary, bladder, and many other organs. Analysis of p53 mutations may provide useful information for the diagnosis, prognosis and therapy of cancer.  相似文献   

13.
Lee TM  Cai H  Hsing IM 《The Analyst》2005,130(3):364-369
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications.  相似文献   

14.
An integrated two-dimensional (2-D) DNA separation platform, combining standard gel electrophoresis with temperature gradient gel electrophoresis (TGGE) on a polymer microfluidic chip, is reported. Rather than sequentially sampling DNA fragments eluted from standard gel electrophoresis, size-resolved fragments are simultaneously electrokinetically transferred into an array of orthogonal microchannels and screened for the presence of sequence heterogeneity by TGGE in a parallel and high throughput format. A bulk heater assembly is designed and employed to externally generate a temporal temperature gradient along an array of TGGE channels. Extensive finite element modeling is performed to determine the optimal geometries of the microfluidic network for minimizing analyte band dispersion caused by interconnected channels in the network. A pH-mediated on-chip analyte stacking strategy is employed prior to the parallel TGGE separations to further reduce additional band broadening acquired during the electrokinetic transfer of DNA fragments between the first and second separation dimensions. A comprehensive 2-D DNA separation is completed in less than 5 min for positive detection of single-nucleotide polymorphisms in multiplex PCR products that vary in size and sequence.  相似文献   

15.
Towards biochips using microstructured optical fiber sensors   总被引:2,自引:0,他引:2  
In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO2 laser. The developed chip configuration allows the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing layer contains the DNA string complementary to the target DNA sequence and thus operates through the highly selective DNA hybridization process. Optical detection of the captured DNA was carried out using the evanescent-wave-sensing principle. Owing to the small size of the chip, the presented technique allows for analysis of sample volumes down to 300 nL and the fabrication of miniaturized portable devices.   相似文献   

16.
Considerable efforts have been devoted to the development of rapid and sensitive methods allowing the detection of viral nucleic acid. We herein describe an assay for identification of a specific influenza sequence. The suggested method was based on isolation using paramagnetic particles coupled with electrochemical detection of isolated product. Peptide nucleic acid (PNA) was used as a probe for hybridization and identification of the influenza-derived specific sequence. The use of PNA can show numerous benefits: PNA probe is not degradable by enzymes and the duplex of PNA with RNA/DNA is more thermostable and more resistant to pH changes than DNA/DNA or RNA/RNA duplexes. This PNA probe assay can be applied as a magnetically guidable tool for detection of DNA/RNA samples under different conditions.  相似文献   

17.
Rapid and accurate detection of genetic mutations based on nanotechnology would provide substantial advances in detection of polycystic kidney disease (PKD), a disease whose current methods of detection are cumbersome due to the large size and duplication of the mutated gene. In this study, a nanotechnology-based DNA assay was developed for detection of SNPs (single nucleotide polymorphisms) in a feline autosomal dominant PKD (ADPKD) model which can readily be adapted to diagnosis of human ADPKD type 1. Europium and terbium phosphors were doped into gadolinium crystal hosts with a magnetic core, providing stable luminescence and the possibility of magnetic manipulations in a solution-based assay. A hybridization-in-solution DNA assay was optimized for feline PKD gene SNP detection using genomic DNA extracted from feline kidney tissue and blood. This assay showed a substantial differentiation between PKD and control specimens. The nanotechnology-based DNA assay is attractive from the viewpoint of rapid availability, simple methodology, and cost reduction for clinical use to detect mutations involved in human ADPKD and other genetic diseases. Figure Schematic diagram of PKD (Polycystic Kidney Disease) SNPs detection assay using feline genomic DNA in magnetic/luminescent nanoparticle-based DNA hybridization  相似文献   

18.
Buchholz BA  Shi W  Barron AE 《Electrophoresis》2002,23(10):1398-1409
We review the variety of thermo-responsive and shear-responsive polymer solutions with "switchable" viscosities that have been proposed for application as DNA sequencing matrices for capillary and microfluidic chip electrophoresis. Generally, highly entangled polymer solutions of high-molar mass polymers are necessary for the attainment of long DNA sequencing read lengths (> 500 bases) with short analysis times (< 3 h). However, these entangled polymer matrices create practical difficulties for microchannel electrophoresis with their extremely high viscosities, necessitating high-pressure loading into capillaries or chips. Shear-responsive (shear-thinning) polymer matrices exhibit a rapid drop in viscosity as the applied shear force is increased, but still require a high initial pressure to initiate flow of the solution into a microchannel. Polymer matrices designed to have thermo-responsive properties display either a lowered (thermo-thinning) or raised (thermo-thickening) viscosity as the temperature of the solution is elevated. These properties are generally designed into the polymers by the incorporation of moderately hydrophobic groups in some part of the polymer structure, which either phase-separate or hydrophobically aggregate at higher temperatures. In their low-viscosity states, these matrices that allow rapid loading of capillary or chip microchannels under low applied pressure. The primary goal of work in this area is to design polymer matrices that exhibit this responsive behavior and hence easy microchannel loading, without a reduction in DNA separation performance compared to conventional matrices. While good progress has been made, thermo-responsive matrices have yet to offer sequencing performance as good as nonthermo-responsive networks. The challenge remains to accomplish this goal through the innovative design of novel polymer structures.  相似文献   

19.
A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.  相似文献   

20.
《Electroanalysis》2004,16(23):1999-2002
We have demonstrated an electrochemical gene chip protocol for the SNPs detection of nonlabeled DNA. Using an array consisting of streptavidin‐modified gold electrodes, probe DNA were attached through the application of a direct electric field. Electrochemical response changes originating from the hybridization of nucleic acids to protein‐bound nucleic acids using soluble mediators in K3Fe(CN)6 solution could then be observed. The electrochemical protocol developed showed high sensitivity and good reproducibility in the detection of DNA hybridization. Significant changes in electrochemical signals were also observed when using target DNA with a single base mismatch, indicating the applicability of this method to single nucleotide polymorphisms (SNPs) detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号