首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto L- glutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by electrochemical methods, and direct electrochemistry of HRP can be achieved with formal potential of-0.242 V (vs. saturated Ag/AgCl) in pH 7 phosphate buffer solution (PBS), the redox peak current is linear to scan rate and rate constant can be calculated to be 0.042 s^-1. The HRP-SAMs- based biosensors show its better electrocatalysis to hydrogen peroxide in the concentration range of 1 × 10^-6 mol/L to 1.2 × 10^-3 mol/L with a detection limit of 4 × 10^-7 mol/L. The apparent Michealis-Menten constant is 3.12 mmol/L. The biosensor can effectively eliminate the interferences of dopamine, ascorbic acid, uric acid, catechol and p-acetaminophen.  相似文献   

2.
One-step, diameter-selective dispersion of single-walled carbon nanotubes (SWCNTs) has been accomplished through noncovalent complexation of the nanotubes with a water-soluble, biocompatible polymer chitosan at room temperature. Such chitosan-wrapped individual SWCNTs can be used for the immobilization of horseradish peroxidase (HRP) and be used to construct an electrode for direct bioelectrochemical sensing without an electron mediator. The direct electron transfer between HRP and the electrode surface was observed with a formal potential of approximately −0.35 V (vs. saturated calomel electrode) in phosphate buffer solution and the calculated heterogeneous electron transfer rate constant is approximately 23.5 s−1. Experimental results indicate that the immobilized HRP retains its catalytic activity for the reduction of nitric oxide. Such an HRP–SWCNT–chitosan-based biosensor exhibited a rapid response time of less than 6 s and a good linear detection range for nitrite concentration, from 25 to 300 μM with a detection limit of 3 μM. The apparent Michaelis–Menten constant (K m) and the maximum electrode sensitivity (imax/K m) are found to be 7.0 mM and 0.16 μA mM−1, respectively. Both the unique electrical properties of SWCNTs and biocompatibility of chitosan enable the construction of an excellent biosensing platform for improved electrocatalysis of HRP, allowing, specifically, the detection of trace levels of nitric oxide.  相似文献   

3.
Horseradish peroxidase (HRP) was immobilized into a new type of sol–gel-derived nano-sized tin oxide/gelatin composite film (SnO2 composite film) using a sol–gel film/enzyme/sol–gel film “sandwich” configuration. Direct electrochemistry and electrocatalysis of HRP incorporated into the composite films were investigated. HRP/SnO2 composite film exhibited a pair of stable and quasi-reversible cyclic voltammetric peaks for the HRP Fe(III)/HRP Fe(II) redox couple with a formal potential of about −0.25 V (vs. SCE) in a pH 6.0 phosphate buffer solution. The electron transfer between the enzyme and the underlying electrode was greatly enhanced in the microenvironment with nano-SnO2 particles and nanoporous structures. Morphologies and microstructures of the composite films and HRP/composite films were characterized with TEM, AFM. Electrochemical impedance spectroscopy (EIS) was also used to feature the HRP incorporated into composite films. FTIR and UV–Vis spectroscopy demonstrated that HRP in the composite film could retain its native secondary structure. With the advantages of organic–inorganic hybrid materials, the HRP/SnO2 composite film modified electrode displayed good stability and electrocatalytic activity to the reduction of H2O2, The apparent Michaelis-Menten constant was estimated to be 0.345 mM, indicating a high affinity of HRP entrapped into the composite film toward H2O2.  相似文献   

4.
Xu Y  Wang F  Chen X  Hu S 《Talanta》2006,70(3):651-655
The heme-protein including myoglobin (Mb), hemoglobin (Hb) and horseradish peroxidase (HRP) were immobilized on normal graphite electrode by using N,N-dimethylformamide (DMF). The proteins undergo direct electron-transfer reactions. The current is linearly dependent on the scan rate, indicating that the direct electrochemistry of heme-protein in that case is a surface-controlled electrode process. The E°s are linearly dependent on solution pH (redox-Bohr effect), indicating that the electron transfer was proton-coupled. Ultraviolet-visible (UV-vis) and reflection-absorption infrared (RAIR) spectra suggest that the conformation of proteins in the presence of DMF are little different from that proteins alone the conformation changes reversibly in the range of pH 3.0-10.0. The catalytic activity of proteins were examined by hydrogen peroxide and nitrite.  相似文献   

5.
Ran Q  Peng R  Liang C  Ye S  Xian Y  Zhang W  Jin L 《Talanta》2011,83(5):700-1385
A simple and versatile approach for covalent immobilization of redox protein on solid surface via self-assembled technique and click chemistry is reported. The alkynyl-terminated monolayers are obtained by self-assembled technique, then, azido-horseradish peroxidase (azido-HRP) was covalent immobilized onto the formed monolayers by click reaction. The modified process is characterized by reflection absorption infrared spectroscopy (RAIR), surface-enhanced Raman scattering spectroscopy (SERS) and electrochemical methods. All the experimental results suggest that HRP is immobilized onto the electrode surface successfully without denaturation. Furthermore, the immobilized HRP shows electrocatalytic reduction for H2O2, and the linear range is from 5.0 to 700 μM. The heterogeneous electron transfer rate constant ks is 1.11 s−1 and the apparent Michaelis-Menten constant is calculated to be 0.196 mM.  相似文献   

6.
Direct electrochemistry and electrocatalysis of horseradish peroxidase (HRP) immobilized on a hyaluronic acid (HA)-single walled carbon nanotubes (SCNs) composite film coated glassy carbon electrode (GCE) was studied for the first time. HRP entrapped in the SCNs-HA composite film exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks in a 0.1 M phosphate buffer solution (pH 7.0). Formal potential vs. standard calomel electrode (E°′) was −0.232 V, and E°′ was linearly dependent on the solution pH indicating that the electron transfer was proton-coupled. The current is linearly dependent on the scan rate, indicating that the direct electrochemistry of HRP in that case is a surface-controlled electrode process. UV-VIS spectrum suggested HRP retained its original conformation in the SCNs-HA film. Immobilized HRP showed excellent electrocatalysis in the reduction of hydrogen peroxide (H2O2).  相似文献   

7.
In this contribution the substitution of the central protoporphyrin IX iron complex of horseradish peroxidase by the respective osmium porphyrin complex is described. The direct electrochemical reduction of the Os containing horseradish peroxidase (OsHRP) was achieved at ITO and modified glassy carbon electrodes and in combination with spectroscopy revealed the three redox couples OsIIIHRP/OsIVHRP, OsIVHRP/OsVHRP and OsVHRP/OsVIHRP. The midpoint potentials differ dependent on the electrode material used with E1/2 (OsIII/IV) of − 0.4 V (ITO) and − 0.25 V (GC), E1/2 (OsIV/V) of − 0.16 V (ITO) and + 0.10 V (GC), and E1/2 (OsV/VI)of + 0.18 V (ITO), respectively. Moreover, with immobilised OsHRP the direct electrocatalytic reduction of hydrogen peroxide and tert-butyl hydroperoxide was observed. In comparison to electrodes modified with native HRP the sensitivity of the OsHRP-electrode for tert-butyl hydroperoxide is higher.  相似文献   

8.
The composite film based on Nafion and hydrophobic room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim] PF6) was explored. Here, Nafion was used as a binder to form Nafion-ionic liquids composite film and help [bmim] PF6 effectively adhered on glassy carbon (GC) electrode. X-ray photoelectron spectroscopy (XPS), cyclic voltammtery (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize this composite film, showing that the composite film can effectively adhere on the GC electrode surface through Nafion interacting with [bmim] PF6 and GC electrode. Meanwhile, doping [bmim] PF6 in Nafion can also effectively reduce the electron transfer resistance of Nafion. The composite film can be readily used as an immobilization matrix to entrap horseradish peroxidase (HRP). A pair of well-defined redox peaks of HRP was obtained at the HRP/Nafion-[bmim] PF6 composite film-modified GC electrode through direct electron transfer between the protein and the underlying electrode. HRP can still retain its biological activity and enhance electrochemical reduction towards O2 and H2O2. It is expected that this composite film may find more potential applications in biosensors and biocatalysis.  相似文献   

9.
Xiang C  Zou Y  Sun LX  Xu F 《Talanta》2007,74(2):206-211
A robust and effective nanohybrid film based on gold nanoparticles (GNPs)/chitosan (Chit)/multi-walled carbon nanotubes (MWNTs) was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the nanohybrid film modified glassy carbon (GC) electrode by cyclic voltammetry. The direct electron transfer between Cyt c and the modified electrode was investigated in detail. Cyt c shows a couple of quasi-reversible and well-defined cyclic voltammetry peaks with a formal potential (E0′) of −0.16 V (versus Ag/AgCl) in pH 7.0 phosphate buffer solution (PBS). The Cyt c/GNPs/Chit/MWNTs modified GC electrode gives an improved electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2). The sensitivity is 92.21 μA mM−1 cm−2 and the calculated apparent Michaelis-Menten constant () is 0.791 mM, indicating a high-catalytic activity of Cyt c. The catalysis currents increase linearly to the H2O2 concentration in a wide range of 1.5 × 10−6 to 5.1 × 10−4 M with a correlation coefficient 0.999. The detection limit is 9.0 × 10−7 M (at the ratio of signal to noise, S/N = 3). Moreover, the modified electrode displays rapid response (5 s) to H2O2, and possesses good stability and reproducibility.  相似文献   

10.
A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) film. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9×10^-7 to 2.9×10^-3 mol/L with a correlation coefficient of 0.991, and response time 〈5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.  相似文献   

11.
辣根过氧化酶(HRP)在Co/NH2/ITO离子注入电极上有一对良好的氧化还原峰,峰电位分别为Epc=-0.2 V,Epa=-0.01 V(vsAg/AgCl)。该修饰电极对H2O2具有催化作用,可以用作H2O2的生物传感器,峰电流与H2O2的浓度分别在1.0×10-10~2.0×10-8mol/L和2.0×10-8~1.0×10-7mol/L范围内呈线性关系,线性回归方程分别为Ip(mA)=2.2986+0.06632c(nmol/L)和Ip(mA)=3.5788+7.3053E-4c(nmol/L),相关系数分别为0.9972和0.9688。检出限为1.0×10-10mol/L。  相似文献   

12.
Na Zheng  Zhuobin Yuan 《Talanta》2009,79(3):780-786
Magnetic nanoparticles (Fe3O4) were synthesized by a chemical coprecipitation method. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to confirm the crystallite structure and the particle's radius. The Fe3O4 nanoparticles and chitosan (CS) were mixed to form a matrix in which haemoglobin (Hb) can be immobilized for the fabrication of H2O2 biosensor. The Fe3O4-CS-Hb film exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks due to the redox of Hb-heme Fe (III)/Fe (II) in a pH 7.0 phosphate buffer. The formal potential of Hb-heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 4.0-10.0 with a slope of 46.5 mV pH−1, indicating that electron transfer was accompanied with single proton transportation in the electrochemical reaction. The surface coverage of Hb immobilized on Fe3O4-CS film glassy carbon electrode was about 1.13 × 10−10 mol cm−2. The heterogeneous electron transfer rate constant (ks) was 1.04 s−1, indicating great facilitation of the electron transfer between Hb and magnetic nanoparticles-chitosan modified electrode. The modified electrode showed excellent electrocatalytic activity toward oxygen and hydrogen peroxide reduction. The apparent Michaelis-Menten constant for H2O2 was estimated to be 38.1 μmol L−1.  相似文献   

13.
Alpha-zirconium phosphate nanosheets (ZrPNS) derived via the delamination of layered alpha-zirconium phosphate (alpha-ZrP) have been proven to be efficient support matrixes for the immobilization of horseradish peroxidase (HRP). X-ray powder diffraction (XRD) results revealed that ZrPNS in HRP-ZrPNS film remained unorderly structured for the effect of HRP. Fourier transform infrared (FTIR) spectra results revealed that HRP remained the secondary structure in HRP-ZrPNS film. The direct electrochemistry of HRP was realized in HRP-ZrPNS film on a glassy carbon electrode (GCE), showing a pair of well-defined, nearly reversible cyclic voltammetry (CV) peaks for the HRP heme Fe(III)/Fe(II) redox couple. The average surface concentration (Gamma(*)) of electroactive HRP in HRP-ZrPNS film was estimated to be 1.35x10(-10) mol cm(-2), which indicated a high loading of enzyme molecules in HRP-ZrPNS film. Based on these, a third generation reagentless biosensor was constructed for the determination of hydrogen peroxide (H(2)O(2)). The response time of the biosensor was less than 3 s, and the linear response range of the biosensor for H(2)O(2) was from 1.3x10(-6) to 1.6x10(-2) M with a correlation coefficient of 0.9997.  相似文献   

14.
A.K. Upadhyay 《Talanta》2009,79(1):38-9495
A novel amperometric biosensor for the analytical determination of hydrogen peroxide was developed. The fabrication of the biosensor was based on the coimmobilization of horseradish peroxidase (HRP), methylene green (MG) and multiwalled carbon nanotubes within ormosils; 3-aminopropyltrimethoxysilane (APTMOS), 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (ETMOS) and phenyltrimethoxysilane (PHTMOS). APTMOS determined the hydrophilicity/hydrophobicity of the ormosils and PHTMOS and ETMOS increased the physical and mechanical strength of the ormosil matrix. The ormosil modified electrodes were characterized with SEM, UV-vis spectroscopy and electrochemical methods. Cyclic voltammetry and amperometric measurements demonstrated the MG coimmobilized with HRP in this way, displayed good stability and could efficiently shuttle electrons between immobilized enzyme and electrode, and MWCNTs facilitated the electrocatalytic reduction of H2O2 at reduced over potential. The Micheaelis constant of the immobilized HRP was 1.8 mM, indicating a high affinity of the HRP to H2O2 without loss of enzymatic activity in ormosil matrix. The prepared biosensor had a fast response of H2O2, less than 10 s, and excellent linear range of concentration from 5 × 10−7 to 2 × 10−5 M with the detection limit of 0.5 μM (S/N = 3) under the optimum conditions. At the same time, the influence of solution pH, effect of enzyme amount, steady-state applied potential and temperature on the biosensor were investigated. The enzyme electrode retained about 90% of its initial activity after 30 days of storage in a dry state at 4 °C. The preparation of the developed biosensor was convenient and showed high sensitivity with good stability.  相似文献   

15.
After being treated by mixed acids, single-walled carbon nanotubes (SWNTs) were shortened and had negatively charged groups on the surface. Positively charged hemoglobin or myoglobin at pH 5.0 was successfully assembled with SWNTs into layer-by-layer films on solid surfaces, designated as {SWNT/protein} n . While only those proteins in the first few bilayers closest to the electrode surface exhibited electroactivity, the {SWNT/protein} n films demonstrated a much higher fraction of electroactive proteins and better controllability in film construction compared with cast films of the proteins and carbon nanotubes. The proteins in the {SWNT/protein} n films retained their near-native structure at medium pH. The stable protein film electrode showed good electrocatalytic properties toward reduction of oxygen and hydrogen peroxide, demonstrating the potential application of the {SWNT/protein} n films as a new type of biosensor based on the direct electrochemistry of proteins without using mediators. Figure Cyclic voltammograms at 0.2 V s−1 in pH 7.0 buffers with different number of bilayers (n) for layer-by-layer {single-walled carbon nanotube/hemoglobin} n films.  相似文献   

16.
A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator.  相似文献   

17.
Direct electron transfer was found to be greatly facilitated for horseradish peroxidase (HRP) in a didodecyldimethylammonium bromide (DDAB) biomembrane-like film at a pyrolytic graphite (PG) electrode involving the FeIII FeII couple. The heterogeneous electron transfer rate constant ks was fitted as 9.0 s−1 using the non-linear regression analysis of the square wave voltammograms at a series of frequencies and pulse heights. The pH dependence of the formal potential for HRP in DDAB film at medium pH environments suggested one-proton transfer coupled with a one-electron transfer reaction. Scanning electron microscopy (SEM) showed different film morphology for HRP and HRP---DDAB films. UV–vis and reflectance absorption infrared (RAIR) spectra inferred that the heme state of HRP in DDAB film was similar to that in its native state. Circular dichroism (CD) results indicated slight perturbation of DDAB on the second structure of HRP. Thus, the embedded HRP in the biomembrane-like DDAB film showed nearly native structural properties and improved electrochemical characteristics. This has potential value for the basic and applied bioelectrochemistry of enzymes.  相似文献   

18.
A novel electrochemical DNA biosensor based on zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is presented. The MWNTs/nano ZnO/chitosan composite film modified glassy carbon electrode (MWNTs/ZnO/CHIT/GCE) was fabricated and DNA probes were immobilized on the electrode surface. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as an indicator. The sensor can effectively discriminate different DNA sequences related to PAT gene in the transgenic corn, with a detection limit of 2.8× 10^-12 mol/L of target sequence.  相似文献   

19.
Hemoglobin modified electrode was successfully fabricated to realize direct electrochemistry by immobilizing of Hemoglobin (Hb) in bimodal mesoporous silica (BMS) and chitosan (CS) inorganic–organic hybrid film. Here, BMS acted as a support to immobilize Hb due to its large pores and CS acted as a binder to increase film adherence and stabilizer to prevent the leakage of Hb. The resulting electrode (Hb/BMS/CS) gave a well-defined, reversible redox couple for HbFe(III)/Fe(II) with a formal potential of about −0.32 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. Hb/BMS/CS electrode showed a better electrocatalytial performance to H2O2 with wider linear detection range, lower detection limit, and higher sensitivity than that at electrode without BMS. The improved electrocatalytic performance for Hb/BMS/CS electrode was possibly contributed to BMS bimodal structure, whose large pores with 10–40 nm provide favorable conditions for protein immobilization and small pores with 2–3 nm avoid the mass-transfer limitations. In addition, UV–Vis and FTIR spectra indicated that Hb well maintained its native structure in the hybrid film.  相似文献   

20.
A novel magnetic ordered mesoporous carbon composite was prepared. Electrochemical measurements showed that the ordered mesoporous carbon composite provided an excellent matrix for the co‐adsorption of horseradish peroxidase (HRP). HRP could be separated and collected by the application of a magnetic field and its direct electron‐transfer could be achieved in the solution, not on the electrode thereby preventing the degradation of the enzyme. The cyclic voltammetric experimental results of HRP indicated that HRP displayed a pair of stable peaks with a formal potential of ?0.306 V in PBS. The resulting biosensor exhibited fast amperometric response to hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号