首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes employing capillary electrophoresis (CE) for the separation of gold colloids in nanometer-size regimes. Adding sodium dodecylsulfate (SDS) surfactant to the running buffer enhances the capability of CE to separate gold nanoparticles. We found that the optimized separation conditions involved SDS (70 mM), 3-cyclohexylamoniuopropanesulfonic acid (CAPS) buffer (10 mM), pH 10.0, and an applied voltage of 20 kV. We propose that the charged surfactants associate onto the surface of the gold nanoparticles and cause a change in the charge-to-size ratio of gold nanoparticle, which is a function of the surface area of nanoparticle and the surfactant concentration of running electrolyte. At high concentrations of the surfactant in the running electrolyte—i.e., when the surface of the gold nanoparticles is fully occupied with SDS—a linear relationship exists between the electrophoretic mobility and nanoparticles having diameters ranging from 5.3 to 38 nm. Based on the results of separating the 5.3 and 19 nm nanoparticles, we estimate that the size resolution (Rs=1.0) is 5.0 nm. The relative standard deviations of the electrophoretic mobilities of the 5.3 and 19 nm gold nanoparticles are 0.97 and 0.54%, respectively.  相似文献   

2.
《Analytica chimica acta》2004,503(2):271-278
In this work, a capillary electrophoresis (CE) method for the determination of a group of eleven triazine compounds by micellar electrokinetic capillary chromatography (MEKC) with diode array detection was developed. The eleven herbicides studied were: desethylatrazin-2-hydroxy (DEA), simazine, prometon, atrazine, simetryn, ametryn, propazine, prometryn, trietazine, terbutylazine, and terbutryn The separation of these compounds was optimised as a function of buffer concentration and pH, concentration of sodium dodecyl sulphate (SDS) and voltage applied. To increase the selectivity of the separation and the resolution of the solutes, different organic solvents were tested as buffer additives, obtaining the best results when 1-propanol was used. The optimised buffer (24 mM of sodium borate, 18 mM of disodium hydrogen phosphate, 25 mM of SDS, pH 9.5, and 5% of 1-propanol) provides the best separation in terms of resolution and migration time. This method allowed the determination of these compounds at concentrations of 0.05 μg l−1 in ground water samples pretreated using solid-phase extraction (SPE).  相似文献   

3.
A capillary electrophoretic method for the separation of the aminoglutethimide (AGT) enantiomers using methylated-β-cyclodextrin (M-β-CD) as chiral selector is described. Several parameters affecting the separation were studied, including the type and concentration of chiral selector, buffer pH, voltage and temperature. Good chiral separation of the racemic mixture was achieved in less than 9 min with resolution factor Rs = 2.1, using a fused-silica capillary and a background electrolyte (BGE) of tris-phosphate buffer solution (50 mmol L−1, pH 3.0) containing 30 mg mL−1 of M-β-CD. The separation was carried out in normal polarity mode at 25 °C, 16 kV and using hydrostatic injection. Acceptable validation criteria for selectivity, linearity, precision, and accuracy/recovery were included. The proposed method was successfully applied to the assay of AGT enantiomers in pharmaceutical formulations. The computational calculations for the inclusion complexes of the R- and S-AGT-M-β-CD rationalized the reasons for the different migration times between the AGT enantiomers.  相似文献   

4.
Orthogonal design has been used to the optimization of separation and determination of two active components in traditional Chinese medicines by capillary electrophoresis. The concentration of phosphate, applied voltage, organic modifier content and buffer pH were selected as variable parameters. Their different effects on peak resolution were studied by the experimental design method. Optimized separation conditions were obtained and successfully applied to the separation and determination of aconitine and hypaconitine in Aconitum medicinal herbs. Good separation was achieved within 7 min using a buffer system composed of 20 mmol L−1 phosphate and 35% acetonitrile at pH 9.5. The applied voltage was 14 kV and the detection was set at 235 nm. In addition, a radial basis function neural network with a “4-18-1” structure was developed based on the experimental results of orthogonal design and uniform design, and was applied to the prediction of peak resolution of the two active components under the optimum separation conditions given by orthogonal design. The predicted results were in good agreement with the experimental values, indicating that radial basis function neural network is a potential way for the selection of separation conditions in capillary electrophoresis.  相似文献   

5.
A method of separation and determination of homovanillic acid (HVA) and vanillylmandelic acid (VMA) was developed based on capillary zone electrophoresis/amperometric detection with high sensitivity, good resolution and selectivity. In order to achieve complete separation and good response, several factors including pH, buffer concentration, separation voltage, detection potential and the length of separation capillary, were studied in detail. The method has been used to determine both HVA and VMA in human urine. Uric acid (UA) in human urine did not interference with their determination. The limit of detection of the method was 1.3×10−6 mol/l (1.4 fmol) for HVA and 7.9×10−7 mol/l (0.87 fmol) for VMA at a signal-to-noise ratio of 3.  相似文献   

6.
In-channel indirect amperometric detection mode for microchip capillary electrophoresis with positive separation electric field is successfully applied to some heavy metal ions. The influences of separation voltage, detection potential, the concentration and pH value of running buffer on the response of the detector have been investigated. An optimized condition of 1200 V separation voltage, −0.1 V detection potential, 20 mM (pH 4.46) running buffer of 2-(N-morpholino)ethanesulfonic acid (MES) + l-histidine (l-His) was selected. The results clearly showed that Pb2+, Cd2+, and Cu2+ were efficiently separated within 80 s in a 3.7 cm long native separation PDMS/PDMS channel and successfully detected at a single carbon fibre electrode. The theoretical plate numbers of Pb2+, Cd2+, and Cu2+ were 1.2 × 105, 2.5 × 105, and 1.9 × 105 m−1, respectively. The detection limits for Pb2+, Cd2+, and Cu2+ were 1.3, 3.3 and 7.4 μM (S/N = 3).  相似文献   

7.
Xu X  Ye H  Wang W  Yu L  Chen G 《Talanta》2006,68(3):759-764
Four flavonoids (rutin, hyperoside, quercitrin and quercetin) in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. were determined by capillary electrophoresis with wall-jet amperometric detection. The working electrode was a 500 μm diameter carbon disc electrode and the detection potential was +0.95 V (versus Ag/AgCl). Effects of several important factors, such as the running buffer and its corresponding pH and concentration, separation voltage, injection time were investigated to acquire the optimum conditions for separation of these four flavonoids. Baseline separation for the four flavonoids was obtained within 21 min in a 60 cm length capillary at a separation voltage of 15 kV with a 60 mmoL/L Na2B4O7-120 mmoL/L NaH2PO4 buffer (pH 8.8) as running buffer. The relationship between peak currents and analyte concentrations was linear over about two orders of magnitude with detection limits (defined as S/N = 3) ranging from 0.02 to 0.05 μg/mL for all analytes. This method was applied for the determination of the above four flavonoids in H. cordata Thunb. and S. chinensis (Lour.) Bail. with simple extraction procedures, and the assay results were satisfactory.  相似文献   

8.
Capillary zone electrophoresis with electrochemical detection (ED) has been employed for the separation and determination of adenine (A), guanine (G), theophylline (Thp), hypoxanthine (HX), xanthine (Xan) and uric acid (UA). Effects of several important factors such as the acidity and concentration of running buffer, separation voltage, injection time and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 300 μm carbon disc electrode at a working potential of +0.95 V (versus saturated calomel electrode (SCE)). The six purine bases can be well separated within 14 min in a 40 cm length fused-silica capillary at a separation voltage of 10 kV in a 100 mmol/l borate buffer (BB, pH 10.0). The current response was linear over about three orders of magnitude with detection limits (S/N=3) ranging from 0.157×10−6 to 0.767×10−6 mol/l for all compounds. The proposed method was successfully applied to determine Thp in tea and aminophylline tablets, UA in human urine, and two purine bases in DNA.  相似文献   

9.
A method was developed for the analysis of four aliphatic diamines by capillary zone electrophoresis using pre-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA)/CN and amperometric detection. The pre-column derivatization reaction conditions including the molar ratio of NDA to amines, the cyanide concentration, the pH value of derivatization buffer, and the reaction time, were investigated. The separation of four derivatives of aliphatic diamines has been optimized by capillary zone electrophoresis (CZE) using end-column amperometric detection with a carbon fiber microelectrode, at a constant potential of 0.7 V versus SCE. The optimum conditions for the separation were 10 mM Tris-H3PO4 (pH 4.0) for the running buffer solution, 15 kV for the separation voltage. The detection limits for diaminopropane, putrescine, cadaverine, diaminohexane were 6.7×10−8, 5.1×10−8, 1.9×10−7 and 3.8×10−7 M, respectively (S/N=3). The proposed method was applied to the determination of aliphatic diamines in a lake water sample by the standard addition method. The recovery of these amines in water was 89.9-107%.  相似文献   

10.
A gold nanoparticle-filled capillary electrophoresis method combined with three multiplex polymerase chain reactions (PCRs) was established for simultaneous diagnosis of five common α-thalassemia deletions, including the -α3.7 deletion, -α4.2 deletion, Southeast Asian (- -SEA), Filipino (- -FIL) and Thai (- -THAI) deletions. Gold nanoparticles (GNPs) were used as a pseudostationary phase to improve the resolution between DNA fragments in a low-viscosity polymer. To achieve the best CE separation, several parameters were evaluated for optimizing the separation conditions, including the capillary coating, the concentrations of polymer sieving matrix, the sizes and concentrations of GNPs, the buffer concentrations, and the pH. The final CE method for separating a 200-base pair (bp) DNA ladder and α-thalassemia deletions used a DB-17 capillary, 0.6% poly(ethylene oxide) (PEO) prepared in a mixture of GNP32nm solution and glycine buffer (25 mM, pH 9.0) (80:20, v/v) as the sieving matrix with 1 μM YO-PRO-1 for fluorescence detection; the applied voltage was −10 kV (detector at anode side) and the separation temperature was 25 °C. Under these optimal conditions, 15 DNA fragments with sizes ranging from 0.2 kb to 3.0 kb were resolved within 11.5 min. The RSDs of migration times were less than 2.81%. A total of 21 patients with α-thalassemia deletions were analyzed using this method, and all results showed good agreement with those obtained by gel electrophoresis.  相似文献   

11.
A capillary electrophoresis for the chiral separation of racemic methotrexate (rac-MTX) was developed and validated. The two enantiomers were separated by using fused-silica capillary and a running buffer containing phosphate and hydroxypropyl-β-cyclodextrin (HP-β-CD). Several parameters were studied, including concentration and pH of phosphate buffer, separation voltage, and type and concentration of CD. The quantitative ranges were 12.5-200.0 μM for each enantiomer. The intra- and inter-day relative standard deviations (R.S.D.) and relative errors (R.E.) (n=5) were all <5%. The detection limits were found to be about 4 μM (S/N=3, injection 5 s) at 280 nm. All recoveries were greater than 93%. This method was applied to the assay of l-MTX in pharmaceuticals.  相似文献   

12.
A new capillary zone electrophoresis (CZE) method for the separation of omeprazole enantiomers has been developed. Methyl-β-cyclodextrin (methyl-β-CD) was chosen as the chiral selector, and several parameters, such as cyclodextrin structure and concentration, buffer concentration, pH, and capillary temperature were investigated in order to optimize separation and run times. Analysis times, shorter than 8 min were found using a background electrolyte solution consisting of 40 mM phosphate buffer adjusted to pH 2.2, 30 mM β-cyclodextrin and 5 mM sodium disulphide, hydrodynamic injection, and 15 kV separation voltage. Detection limits were evaluated on the basis of baseline noise and were established 0.31 mg/l for the omeprazole enantiomers. The proposed method was applied to five pharmaceutical preparations with recoveries between 84 and 104% of the labeled contents.  相似文献   

13.
The paper describes the enhanced separation of o-, m-, p-dihydroxybenzene by capillary electrochromatography (CEC) using gold nanoparticles (AuNPs) as stationary phase. The effect of the AuNPs concentration upon separation was investigated. The experimental parameters, including separation voltage, pH, and concentration of running buffer, were optimized. Under the optimum conditions, a good resolution of three dihydroxybenzene isomers was obtained within 15 min in a 50 cm effective length capillary modified with 0.02 nmol/L AuNPs at a separation voltage of 16 kV in a 50 mmol/L acetate buffer (pH 5.0). The linear ranges were from 10(-6) to 10(-4) mol/L and the detection limits were as low as 10(-7) mol/L. This method was successfully used to analysis two kinds of hair coloring agent sample with recoveries in the range of 90-105% and relative standard deviations (RSD) less than 5.0%.  相似文献   

14.
In this paper, we report the use of micellar electrokinetic chromatography (MEKC) for the highly efficient preconcentration and separation of gold nanoparticles (Au NPs). We used the reversed electrode polarity stacking mode (REPSM) of the MEKC system for the on-line enhancement and separation of the Au NPs. Several parameters had dramatic effects on the systems’ performance, including the concentration of sodium dodecylsulfate (SDS) surfactant, the presence of salts in the NP solution, the pH of the running electrolyte, and the temperature of the capillary. Under the optimized conditions [buffer: SDS (70 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 10.0; applied voltage: 20 kV; operating temperature: 25 °C; additive: sodium dihydrogenphosphate (NaH2PO4, 10 mM); REPSM strategy for sample preconcentration], the number of theoretical plates for the 5.3- and 40.1-nm-diameter Au NPs were 3000 and (an ultrahigh) 2.1 × 106, respectively; in addition, the detection sensitivities toward the Au NPs were enhanced ca. 20- and 380-fold, respectively, relative to those obtained using standard MEKC analysis conditions. Furthermore, monitoring the electropherograms using diode-array detection allowed us to identify and characterize the sizes of the separated NPs from their UV–vis spectra. Our findings suggest that MEKC is a highly efficient tool for both the preconcentration and separation of NPs.  相似文献   

15.
Belin GK  Erim FB  Gülaçar FO 《Talanta》2006,69(3):596-600
The separation of different ring numbered polyaromatic hydrocarbons (PAHs) was accomplished by using cetyltrimethylammonium bromide (CTAB) in capillary electrokinetic chromatography. In order to increase the solubilities and selectivities of PAHs, acetonitrile (ACN) was used as an organic modifier. Under the optimised conditions, 11 aromatic compounds were separated within 14.5 min in a running electrolyte containing 10 mM phosphate, 30 mM CTAB, and 40% ACN at pH 6.0. The effects of CTAB and ACN concentrations, voltage and pH on the resolution were investigated. Reproducibilities of migration times range between 0.55 and 1.27 R.S.D.% and peak areas between 1.02 and 7.23 R.S.D.%. Limit of detections (LODs) range between 0.09 and 2.24 μg ml−1. This new and fast separation method of PAHs was applied to cooked oil sample.  相似文献   

16.
阎宏涛  李佗  郭艳丽 《中国化学》2009,27(4):759-762
报道了一种金纳米修饰毛细管电泳分离、测定氨基苯甲酸的新方法。采用制备的金纳米进行了石英毛细管修饰。探讨了修饰金纳米浓度、修饰时间以及缓冲溶液加入一定浓度的金纳米对三种氨基苯甲酸分离和测定的影响,优化了分离电压、酸度以及缓冲溶液浓度等实验条件。结果表明金纳米的存在,显著的改进了氨基苯甲酸分离的选择性,增强了分离效率。在优化的实验条件下,进行了邻、间、对三种氨基苯甲酸的分离和测定。线性浓度范围为0.5–40 µg·mL,相关系数0.9978-0.9992。检测限(S/N = 3) 为0.1-0.5µg·mL。  相似文献   

17.
A capillary electrophoretic method for the separation of the enantiomers of both ofloxacin and ornidazole is described. Several parameters affecting the separation were studied, including the type and concentration of chiral selector, buffer pH, voltage and temperature. Good chiral separation of the racemic mixtures was achieved in less than 16 min with resolution factors Rs = 5.45 and 6.28 for ofloxacin and ornidazole enantiomers, respectively. Separation was conducted using a bare fused-silica capillary and a background electrolyte (BGE) of 50 mM H3PO4-1 M tris solution; pH 1.85; containing 30 mg mL−1 of sulfated-β-cyclodextrin (S-β-CD). The separation was carried out in reversed polarity mode at 25 °C, 18 kV, detection wavelength at 230 nm and using hydrodynamic injection for 15 s. Acceptable validation criteria for selectivity, linearity, precision, and accuracy were studied. The limits of detection (LOD) and limits of quantitation (LOQ) of the enantiomers (ofloxacin enantiomer 1 (OF-E1), ofloxacin enantiomer 2 (OF-E2), ornidazole enantiomer 1 (OR-E1) and ornidazole enantiomer 2 (OR-E2)) were (0.52, 0.46, 0.54, 0.89) and (1.59, 1.40, 3.07, 2.70) μg mL−1, respectively. The proposed method was successfully applied to the assay of enantiomers of both ofloxacin and ornidazole in pharmaceutical formulations. The computational calculations for the enantiomeric inclusion complexes rationalized the reasons for the different migration times between the ofloxacin and ornidazole enantiomers.  相似文献   

18.
Ruecha N  Siangproh W  Chailapakul O 《Talanta》2011,84(5):1323-1328
In this work, the rapid detection of cholesterol using poly(dimethylsiloxane) microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, was developed. Direct amperometric detection for poly(dimethylsiloxane) (PDMS) microchip capillary electrophoresis was successfully applied to quantify cholesterol levels. Factors influencing the performance of the method (such as the concentration and pH value of buffer electrolyte, concentration of cholesterol oxidase enzyme (ChOx), effect of solvent on the cholesterol solubility, and interferences) were carefully investigated and optimized. The migration time of hydrogen peroxide, product of the reaction, was less than 100 s when using 40 mM phosphate buffer at pH 7.0 as the running buffer, a concentration of 0.68 U/mL of the ChOx, a separation voltage of +1.6 kV, an injection time of 20 s, and a detection potential of +0.5 V. PDMS microchip capillary electrophoresis showed linearity between 38.7 μg/dL (1 μM) and 270.6 mg/dL (7 mM) for the cholesterol standard; the detection limit was determined as 38.7 ng/dL (1 nM). To demonstrate the potential of this assay, the proposed method was applied to quantify cholesterol in bovine serum. The percentages of recoveries were assessed over the range of 98.9-101.8%. The sample throughput was found to be 60 samples per hour. Therefore, PDMS microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, is very rapid, accurate and sensitive method for the determination of cholesterol levels.  相似文献   

19.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   

20.
3-苯基乳酸的手性毛细管电泳拆分   总被引:5,自引:0,他引:5  
李德茂  李从发  刘四新  陈利梅 《色谱》2004,22(3):281-283
考察了环糊精种类、环糊精浓度、缓冲溶液pH、分离电压、温度等因素对3-苯基乳酸手性分离的影响,并对分离条件进行了优化。结果表明,采用区带毛细管电泳技术,以0.03 mol/L的羟丙基-β-环糊精为手性选择剂,0.1 mol/L的磷酸缓冲溶液(pH 5.5)为电泳缓冲溶液,26 kV的分离电压,在25 ℃下可使3-苯基乳酸对映体达到基线分离,分离度为1.51。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号