首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method is proposed using a microcolumn (20 mm × 2.0 mm) packed with nanometer-sized zirconia as solid-phase extractor for the separation/preconcentration of Mn, Cu, Cr, Zn, Ni and Co prior to their determination by inductively coupled plasma optical emission spectrometer (ICP-OES) in environmental samples. The factors affecting the separation and preconcentration of analytes such as pH, sample flow rate and volume, eluent concentration and volume were determined, interfering ions were studied, and the optimal experimental conditions were established. The adsorption capacity of nanometer-sized ZrO2 for Mn, Cu, Cr, Zn, Ni and Co was found to be 1.3, 1.3, 1.7, 2.0, 3.9 and 1.5 mg g−1, respectively. The detection limits of the method were 12, 58, 24, 2, 7 and 36 ng L−1, respectively, with a preconcentration factor of 25. The precision of this method was 1.7% (Mn), 2.9% (Cu), 5.9% (Mn), 3.8% (Mn), 6.2% (Mn) and 4.3% (Mn) with 9 determinations of 10 ng mL−1 of target analytes, respectively. The method was successfully applied to the determination of trace metals in lake water, dried fish samples, certified reference materials of human hair and milk, and provided satisfactory results.  相似文献   

2.
Chaozhang Huang 《Talanta》2007,73(2):274-281
Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals (Co, Cd, Cr, Cu, Mn, Ni, V, Ce, Dy, Eu, La and Yb) in environmental samples was described. Possessing a high adsorption capacity towards the metal ions, mesoporous titanium dioxide has found to be of great potential as an adsorbent for the preconcentration of trace metal ions in samples with complicated matrix. The experimental parameters including pH, sample flow rate, volume, elution and interfering ions on the recovery of the target analytes were investigated, and the optimal experimental conditions were established. Under the optimized operating conditions, a preconcentration time of 90 s and elution time of 18 s with enrichment factor of 10 and sampling frequency of 20 h−1 were obtained. The detection limits of this method for the target elements were between 0.03 and 0.36 μg L−1, and the relative standard deviations (R.S.D.s) were found to be less than 6.0% (n =7, c =5 ng mL−1). The proposed method was validated using a certified reference material, and has been successfully applied for the determination of the afore mentioned trace metals in natural water samples and coal fly ash with satisfactory results.  相似文献   

3.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

4.
A method for determination of trace amounts of gold in environmental samples (rocks, soils, sediments, and waters) by atomic absorption spectrometry with electrothermal atomization (ETAAS) after preconcentration using a chelating sorbent Spheron Thiol 1000 is described. The method accurately determines gold between 0.001 and several tens of grams per ton in samples having complex variations in mineralogy. Pulverized samples are roasted at 650°C to oxidize any sulfide and/or carbonaceous material. Samples are then subjected to a series of acid treatments to eliminate any silica matrix and to dissolve the sample. The Spheron Thiol 1000 is added to the sample solution, and then with sorbed gold is filtered out, washed, and ignited at 550°C. The residue is dissolved in aqua regia, evaporated, dissolved in distilled water, transferred to a volumetric flask, and analyzed by ETAAS.The limits of detection of gold, based on the 3 definition, were 0.5 ng g–1 for 10-g samples (rocks, sediments, soils) and 0.05 ng mL–1 for 1-L water samples. Precision of determination expressed by the relative standard deviation varied from 2.9% to 16.4%. The accuracy of the method is verified by analysis of certified reference materials. The obtained analytical results are in good agreement with attested values. The developed method was applied for gold determination in environmental samples affected by the acidification (acid mine drainage which is mainly a product of pyrite oxidation) from an open quartzite mine in the obov region situated NE of the city of Banská tiavnica (Slovakia).  相似文献   

5.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results.  相似文献   

6.
A method is described for the selective extraction of chromium(III) from aqueous solutions and natural water samples, based on the use of two newly synthesized solid-phase extractors via silica gel-immobilized-vanillin derivatives (I,II). Experimental conditions for effective adsorption of trace levels of Cr(III) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH values for the separation of Cr(III) simultaneously on the newly sorbents were both 4.0 and complete elution of Cr(III) from the sorbents surface was carried out using 2.0 mL of 0.5 mol L− 1 HCl. The sorption capacity of phase I towards Cr(III) was found to be 0.700 mmol g− 1 where the sorption capacity of phase II was 0.538 mmol g− 1. The detection limits (3σ) of the method defined by IUPAC were found to be 0.87 and 0.64 ng mL− 1 with enrichment factors of 100 and 75 for phases I and II, respectively. The method has been applied for the determination of Cr(III) in biological materials and water samples with satisfactory results.  相似文献   

7.
An on-line nickel preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) was studied. Trace amounts of nickel were preconcentrated by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The nickel was removed from the minicolumn with 20% nitric acid. An enrichment factor of 80-fold for a sample volume of 50 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 82 ng l−1. The precision for ten replicate determinations at the 0.5 μg l−1 Ni level was 3.0% relative standard deviation (R.S.D.), calculated from the peak heights obtained. The calibration graph preconcentration method for nickel was linear with a correlation coefficient of 0.9997 at levels near the detection limits (DL) up to at least 100 μg l−1. The method was successfully applied to the determination of nickel in natural water samples.  相似文献   

8.
An efficient and fast dispersive magnetic solid phase extraction method was developed using MIL‐101(Cr)/poly (mercaptobenzothiazole)@magnetite nanoparticles for the preconcentration and determination of nitrophenols in river and rain water samples. High‐performance liquid chromatography‐Ultraviolet instrument was applied for the analysis of target nitrophenols. The effect of several variables on the extraction performance was explored via design of experiment approach. Limits of detection and linear dynamic ranges were attained in the range of 0.05–0.10 µg/L and 0.2–250 µg/L, respectively. The enrichment factors were in the range of 317–363. The precision (n = 3) of dispersive magnetic solid phase extraction method was in the range of 5.3–6.8%. Eventually, the method was utilized for the analysis of target nitrophenols in river and rain water samples.  相似文献   

9.
采用微波消解法处理海洋贝类样品,用电感耦合等离子体质谱法测定样品中镉、铬、铜和铅等4种重金属元素的含量。选择111 Cd、53 Cr、63 Cu和208 Pb等待测元素的同位素克服了质谱干扰。4种元素分别在一定的质量浓度范围内呈线性,检出限(3s)在0.005~0.17μg.L-1之间。镉、铬、铜和铅的回收率分别为94.7%,102.1%,101.9%,105.3%;测定值的相对标准偏差(n=7)分别为4.3%,3.8%,1.5%,6.0%。  相似文献   

10.
A novel, simple method based on magnetically assisted chemical separation (MACS) has been developed for analytical purposes. In this method, neocuproine modified magnetic microparticles was used for selective extraction and preconcentration of copper(II) ions from aqueous solutions. The advantages of this method include consumption of organic solvents almost eliminated and applications on unclear (containing suspended particles) samples without any preliminary filtration step. This method combines simplicity and selectivity of solvent extraction with easy separation of magnetic microparticles from solution with magnet. In addition, it can be considered as a simple method for determination of partition coefficient. The influence of different parameters, such as presence of extractant, amount of extractant loaded on the microparticles, reducing agent, pH, equilibrium time, ionic strength, type and least amount of stripping solution and limit of detection, were evaluated. Also, the effects of various cationic and anionic interferences on the percent recovery of copper were studied. Copper ions were extracted from solution at pH 6 and were stripped from microparticles with 0.5 M HNO3. Extraction efficiencies for solutions with volumes up to 100 ml were >99%. Limit of detection was 1.5 μg/l. The method was applied to the recovery and determination of copper in different water samples.  相似文献   

11.
A novel organic reagent 3-(8-quinolinylazo)-4-hydroxybenzoic acid (QAHBA) was synthesized for chemically modified nanometer-sized alumina, and it was characterized with infrared spectrum and 1H NMR spectra. By using modified nanometer-sized alumina as micro-column packing material, a new method of flow injection (FI) on-line preconcentration coupled to ICP-OES was developed for simultaneous determination of trace metals (Ag, Pd, Au, Ga, In and Nb) in geological and environmental samples. The effects of pH, sample flow rate, sample volume, elution and interfering ions on the recovery of the analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the modified nanometer-sized alumina for Ag, Pd, Au, Ga, In and Nb were found to be 5.1, 7.6, 17.7, 15.6, 8.1 and 12.3 mg g−1, respectively. With 4 min preconcentration time and 24 s elution time, the enrichment factor was 10 and the sample frequency was 10 h−1. The detection limits of this method for Ag, Pd, Au, Ga, In and Nb were 0.12, 0.44, 0.27, 0.19, 0.54 and 0.18 μg l−1, respectively, while the R.S.D.s were 1.6, 2.3, 4.5, 1.6, 1.9 and 1.7% (n = 7, c = 50 ng ml−1), respectively. The proposed method has been applied to the determination of these trace metals in geological-certified reference materials and natural water samples with satisfactory results.  相似文献   

12.
Rostampour L  Taher MA 《Talanta》2008,75(5):1279-1283
Natural clinoptilolite was used as a sorbent material for solid phase extraction and preconcentration of vanadium. The clinoptilolite was first saturated with a cation such as nickel(II) and then modified with benzyldimethyltetradecyleammonium chloride (BDTA) for increasing sorption of 4-(2-pyridylazo)resorcinol (PAR). Vanadium–PAR complex was quantitatively retained on the sorbent by the column method at the pH range 6.2–7.0 at a flow rate of 1 mL min−1. It was removed from the column with 5.0 mL of dimethylformamide solution at a flow rate of 0.8 mL min−1 and determined by UV–vis spectrophotometry at λmax = 550 nm. 0.031 μg of vanadium can be concentrated from 450 mL of aqueous sample (where detection limit as 0.07 ng mL−1 with preconcentration factor of 90). Relative standard deviation for eight replicate determination of 5.0 μg of vanadium in final solution is 2.1%. The interference of number of anions and cations has been studied in detail to optimize the conditions and method was successfully applied for determination of all vanadium as V(IV) form in standard samples.  相似文献   

13.
In order to evaluate the slurry nebulisation method as an alternative method for analysis of sewage sludge, the metal content of sludge samples of different origins was determined. The concentrations of six elements: Cd, Cr, Cu, Ni, Pb, and Zn were determined by introducing the sludge as a slurry into an inductively coupled plasma optical emission spectrometer (ICP-OES). Calibration was performed by using aqueous standard solutions. For comparison, the sewage sludge was also digested by microwave digestion and introduced into the plasma as an aqueous solution. The accuracy of the method was checked by analysing a sewage sludge certified reference material (CRM 007-040 Sewage Sludge). The Student's t-test showed that values obtained using slurry nebulisation were close to the certified values at a 95% confidence level. The values of elements Cd 11.1?±?0.8; Cr 37.7?±?3.3; Cu 563.3?±?38.4; Pb 119.2?±?10.1; Zn 729?±?68.2?mg?kg?1 obtained using this method were comparable with those obtained using the conventional method. The slurry method can, therefore, be successfully applied to the determination of content of each element in sewage sludge with RSD less than 3%, without the need to predissolve them. This could avoid the use of hazardous chemicals, incomplete dissolution and loss of volatile analytes.  相似文献   

14.
A comparative study between cloud point extraction (CPE) and low-temperature directed crystallization (LTDC) is presented. Trace elements (Cd, Pb, Cr, Cu, Zn, Ni and Fe) were preconcentrated by both methods from model and natural water samples and the results were evaluated with respect to extraction efficiency, accuracy, precision, sample throughput and interferences. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were used for the final measurements. The results indicate that these extraction and preconcentration procedures ensure the required accuracy and precision for the reliable identification and quantification of trace elements in natural waters. Drawbacks of each method identified can further assist the analyst towards a better application of each method depending on the target species, the detector employed and the application intended (routine analysis, trace analysis, speciation analysis, etc.).  相似文献   

15.
Fei Zheng 《Talanta》2007,73(2):372-379
A novel sol-gel 3-mercaptopropyltrimethoxysilane (MPTS) modified silica coating was developed for capillary microextraction (CME) of trace Cu, Hg and Pb prior to their on line determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES). This organic-inorganic hybrid coating was in situ created on the inner walls of fused silica capillary using a sol solution containing TMOS (tetramethoxysilane) as a precursor, MPTS as a co-precursor, ethanol as the solvent and hydrochloric acid as a catalyst. The structure of the capillary coating was characterized by FT-IR spectroscopy, Raman spectroscopy, SEM and TEM. The factors affecting on the capillary microextraction of analytes such as pH, sample flow rate and volume, elution solution and interfering ions had been investigated, and the optimized experimental parameters were obtained. Under the optimized conditions, the absorption capacity of MPTS-silica coated capillary was found to be 1.17, 1.96 and 1.19 μg m−1 for Cu, Hg and Pb, and the limits of detection were as low as 0.17 0.22 and 0.52 ng mL−1, respectively. With a sampling frequency of 12 h−1, the relative standard deviations (R.S.D.s) were 4.2, 2.6 and 3.8% (C=4 ng mL−1, n = 7, sample volume = 1 mL) for Cu, Hg and Pb, respectively. The proposed method had been successfully applied to the determination of Cu, Hg and Pb in human urine, human serum and preserved egg. To validate the proposed method, certified reference materials of BCR151 milk powder, GBW07601 (GSH-1) human hair, GSBZ 50016-90 and GSB 07-1183-2000 water samples were analyzed and the determined values were in a good agreement with the certified values.  相似文献   

16.
建立了一种由竹炭作为固相萃取高效吸附剂富集环境水样中痕量三氯生的新方法. 研究并优化了几个影响富集效率的参数. 在优化条件下, 三氯生的检测限为0.08 μg/L, 在1~100 μg/L 范围内有良好的线性关系, 相对标准偏差为2.9% (n=7). 方法可应用于实际废水样品的分析.  相似文献   

17.
Atomic spectroscopy is the most popular approach to determine the presence of heavy metals in the environment. Heavy metals are potentially toxic and have various negative effects on many living organisms, including humans. With the rapid increase in the variety of industries and human activities, large amounts of heavy metals are released into the atmosphere, water, and soil. Heavy metal analysis of environmental samples is very important for determining the exposure limits. Environmental samples are highly complex matrices, and various sample preparation techniques have been developed for the extraction of heavy metals from them, including magnetic solid-phase extraction (MSPE). The use of MSPE in heavy metal analysis has recently gained significant attention owing to a number of advantages. MSPE technique overcomes main issues such as phase separation, handling, and column packing. The use of magnetic adsorbents in sample preparation has grown over the past few years, making MSPE a promising technique for sample preparation. The objective of this review article is to provide the latest applications of MSPE coupled with atomic spectroscopy for heavy metal determination in environmental samples. In addition, new magnetic adsorbents and their analytical merits are emphasized.  相似文献   

18.
Nielsen SC  Stürup S  Spliid H  Hansen EH 《Talanta》1999,49(5):27-1044
A rapid, robust, sensitive and selective time-based flow injection (FI) on-line solvent extraction system interfaced with electrothermal atomic absorption spectrometry (ETAAS) is described for analyzing ultra-trace amounts of Cr(VI). The sample is initially mixed on-line with isobutyl methyl ketone (IBMK). The Cr(VI) is complexed by reaction with ammonium pyrrolidine dithiocarbamate (APDC), and the non-charged Cr(VI)–PDC chelate formed is extracted into IBMK in a knotted reactor made from PTFE tubing. The organic extractant is separated from the aqueous phase by a gravity phase separator with a small conical cavity and delivered into a collector tube, from which 55 μl organic concentrate is subsequently introduced via an air flow into the graphite tube of the ETAAS instrument. The operations of the FI-system and the ETAAS detector are synchronously coupled. A significant advantage of the approach is that matrix constituents, such as high salt contents, effectively are eliminated. The extraction procedure was optimized by a simplex approach. A central composite design was subsequently employed to verify the estimated operational optimum. An 18-fold enhancement in sensitivity of Cr(VI) was achieved after preconcentration for 99 s at a sample flow rate of 5.5 ml min−1, as compared to direct introduction of 55 μl of sample, yielding a detection limit (3σ) of 3.3 ng l−1. The sampling frequency was 24.2 samples h−1. The proposed method was successfully evaluated by analyzing a NIST Cr(VI)-reference material, synthetic seawater and waste waters, and waste water samples from an incineration plant and a desulphurization plant, respectively.  相似文献   

19.
建立了微晶蒽分离富集环境水样中痕量Co(II)的方法。在pH3.0条件下,1-亚硝基-2-萘酚与Co(II)形成红棕色螯合物被微晶蒽定量吸附,能使Co(II)与Pb(II)、Ni(II)、Mn(II)、Cu(II)、Cd(II)、Zn(II)、Fe(III)、Cr(III)、Al(III)等常见离子分离。本法富集倍数达100倍,检出限为0.14μg/L,回收率97.5%~105%,已应用于不同水样中Co(II)的测定。  相似文献   

20.
This study is the development of a new solid phase extraction method based on using magnetic multiwalled carbon nanotubes impregnated with 1-(2-pyridylazo)2-naphthol (PAN) for separation, preconcentration, and flame atomic absorption spectrometric determination of Pb(II) and Cu(II). Optimization of the method was done by investigating pH effect, amount of magnetic multiwalled carbon nanotubes impregnated with PAN, eluent type and volume, matrix effects, and volume of the sample. The optimum adsorbent amount was found to be 75 mg and the optimum pH value was found as 5.5. The detection limits were 16.6 μg L-1 for Pb(II) and 18.9 μg L-1 for Cu(II). The relative standard deviations (RSD%) were less than 4%. Two certified reference materials: SPS-WW2 wastewater and NCS-DC73349 (bush branches and leaves) were used to test the validation of the method. The method was successfully applied to the analysis of Pb(II) and Cu(II) ions in daisy, mint, paprika, sage, rosemary, daphne leaves, heather, green tea, andViburnum opulussamples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号