首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new electrochemical cell sensor, with low cost, simple fabrication, high selectivity and sensitivity was developed in this study. Titanium dioxide nanoparticles (nano-TiO2) were assembled on the disposable indium tin oxide (ITO) electrodes for the immobilization of the drug sensitive leukemia K562/B.W. cells and drug resistant leukemia K562/ADM cells to fabricate the relative cell sensors. The different electrochemical behaviors of the probe allowed us to differentiate one type of leukemia cells from another. Furthermore, the results of electrochemical impedance spectroscopy indicated that the detection limit of the new cell sensor is 1.3 × 103 cells ml?1 with a linear range of 1.6 × 104 to 1.0 × 107 cells ml?1. These results suggested the promising application of this nano-TiO2 interface to construct the non-labeling potential-discriminative cell biosensors for clinical uses.  相似文献   

2.
A novel microfluidic chip with simple design, easy fabrication and low cost, coupled with high-sensitive laser induced fluorescence detection, was developed to provide continuous single-cell analysis based on dynamic cell manipulation in flowing streams. Making use of laminar flows, which formed in microchannels, single cells were aligned and continuously introduced into the sample channel and then detection channel in the chip. In order to rapidly lyse the moving cells and completely transport cellular contents into the detection channel, the angle of the side-flow channels, the asymmetric design of the channels, and the number, shape and layout of micro-obstacles were optimized for effectively redistributing and mixing the laminar flows of single cells suspension, cell lysing reagent and detection buffer. The optimized microfluidic chip was an asymmetric structure of three microchannels, with three microcylinders at the proper positions in the intersections of channels. The microchip was evaluated by detection of anticancer drug doxorubicin (DOX) uptake and membrane surface P-glycoprotein (P-gp) expression in single leukemia K562 cells. An average throughput of 6–8 cells min−1 was achieved. The detection results showed the cellular heterogeneity in DOX uptake and surface P-gp expression within K562 cells. Our researches demonstrated the feasibility and simplicity of the newly developed microfluidic chip for chemical single-cell analysis.  相似文献   

3.
A novel aptamer biosensor for cancer cell assay has been reported on the basis of ultrasensitive electrochemical detection. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for MCF-7 cells detection. Functionalized nanoporous materials, porous graphene oxide/Au composites (GO/Au composites) and porous PtFe alloy have been introduced into the biosensor. Owing to the large surface area and versatile porous structure, the use of nanoporous materials can significantly improve the analysis performance of the biosensors by loading of large amounts of molecules and accelerating diffusion rate. Under the optimized experimental conditions, the proposed aptamer biosensor exhibited excellent analytical performance for MCF-7 cells determination, ranging from 100 to 5.0 × 107 cells mL−1 with the detection limit of 38 cells mL−1. The biosensor showed good selectivity, acceptable stability and reproducibility, and developed a highly sensitive and selective method for cancer cells detection.  相似文献   

4.
In this work, using human acute promyelocytic leukemia cells (HL-60) as a model, a novel microfluidic paper-based electrochemical cyto-device (μ-PECD) was fabricated to demonstrate a facile, portable, and disposable approach for cancer cell detection and in situ screening of anticancer drugs in a high-throughput manner. In this μ-PECD, aptamers modified three-dimensional macroporous Au-paper electrode (Au-PE) was fabricated and employed as the working electrode for specific and efficient cancer cell capture as well as for sequential in-electrode 3D cell culture. This Au-PE showed enhanced capture capacity for cancer cells and good biocompatibility for preserving the activity of captured living cells. Sensitive cancer cell detection was achieved in this μ-PECD, which could respond down to four HL-60 cells in 10 μL volume with a wide linear calibration range from 5.0 × 102 to 7.5 × 107 cells mL−1 and exhibited good stability and reproducibility. Then, in situ anticancer drug screening was successfully implemented in this μ-PECD through monitoring of the apoptotic cancer cells after the in-electrode 3D cell culture with drug-containing culture medium, demonstrating its wide range of potential applications to facilitate effective clinical cancer diagnosis and treatment.  相似文献   

5.
Novel ferrocenyl based carboranes (FcCBs) and their distinguish behavior for cancer cell recognition have been explored in this contribution. The voltammetric study in a droplet of 10 μL placed on the surface of a glassy carbon electrode demonstrates the excellent electrochemical behavior of FcCBs, which could be further exploited for establishing the promising and sensitive biosensors. The FcCBs’ redox behavior is examined in a wide pH range, and square wave voltammetry revealed the reversible and irreversible nature of first and second anodic peaks. The obvious shifts in peak potentials corresponding with the change of pH values demonstrate the abstraction of electrons to be accompanied with the transfer of protons. By using the droplet electrochemical technique, FcCBs can be employed to distinguish normal and cancer cells with a linear range from 1.0 × 103 to 3.0 × 104 cells mL−1 and the limit of detection at 800 cells mL−1. The novel carborane derivatives could be utilized as important potential molecular probes for specific recognition of cancer cells like leukemia cells from normal cells.  相似文献   

6.
The Au nanoparticles (Au NPs) modified interface has been fabricated by multi-potential step electrodeposition in this study. Based on the nano-Au interface, we have proposed an electrochemical approach to detect the cancer cell numbers sensitively with a detection limit of about 500 cells. More interestingly, the drug sensitive leukemia K562 cells and drug resistant leukemia K562/adriamycin could be electrochemically distinguished on the interface by the oxidation potential, which did not show any evident differences on the bare electrode. These results indicate the promising application of this nano-interface for constructing the unlabeled potential-discriminative cell biosensors.  相似文献   

7.
A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.  相似文献   

8.
Mlejnek P  Novak O  Dolezel P 《Talanta》2011,83(5):702-1471
Multidrug resistance (MDR) is often associated with overexpression of the P-glycoprotein (P-gp, ABCB1). It was demonstrated that the P-gp mediated efflux decreases the drug concentration in cancer cells which results in the failure of chemotherapy. However, the MDR phenotype in cancer cells obviously involves various mechanisms. Therefore, if we want to estimate a contribution of the P-gp expression to the MDR phenotype, a clear quantitative relationship between the intracellular drug level and cell sensitivity must be established. To achieve this goal, a sensitive and non-radioactive assay for precise determination of intracellular levels of imatinib and its main metabolite N-desmethyl imatinib (CGP 74588) has been developed. The assay is based on an optimised extraction of cells with 4% formic acid after their separation from the growth medium by centrifugation through a layer of silicone oil. Cell extracts are subsequently analyzed by LC/MS/MS. Calibration curves were linear from 1 to 500 nmol/l for imatinib and from 2 to 500 nmol/l for CGP 74588, with correlation coefficients (r2) better than 0.998 and 0.996, respectively. The limit of quantitation (LOQ) was 1 nmol/l for imatinib and 2 nmol/l for CGP 74588. Our method has been successfully applied to the determination of intracellular levels of imatinib in sensitive K562 and their resistant variant, K562/Dox cells.  相似文献   

9.
Cancer is one of the most serious and lethal diseases around the world. Its early detection has become a challenging goal. To address this challenge, we developed a novel sensing platform using aptamer and RNA polymerase-based amplification for the detection of cancer cells. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for collection of the cells in the microplate wells, and uses SYBR Green II dye as a tracer to produce strong fluorescence signal. The tumor marker interacts first with the recognition probes which were composed of the aptamer and single-stranded T7 RNA polymerase promoter. Then, the recognition probe hybridized with template probes to form a double-stranded T7 RNA polymerase promoter. This dsDNA region is extensively transcribed by T7 RNA polymerase to produce large amounts of RNAs, which are easily monitored using the SYBR Green II dye and a standard fluorometer, resulting in the amplification of the fluorescence signal. Using MCF-7 breast cancer cell as the model cell, the present sensing platform showed a linear range from 5.0 × 102 to 5.0 × 106 cells mL−1 with a detection limit of 5.0 × 102 cells mL−1. This work suggested a strategy to use RNA signal amplification combining aptamer recognition to develop a highly sensitive and selective method for cancer cells detection.  相似文献   

10.
In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C4D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol+) and its anionic counter-ion (Cl) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software.This novel CE-C4D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time < 10 min), precise (repeatability of migration times < 0.7% and of corrected-peak areas < 3.3%; n = 6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion.  相似文献   

11.
Loop-mediated isothermal amplification in conjunction with enzyme-linked immunosorbent assay (LAMP-ELISA) provides a sensitive, specific and cost-effective method for detection of etiological causes of infections. The present study developed a reliable LAMP-ELISA diagnostic kit for identification of Salmonella serogroup D strains and evaluated its potential use in the detection of Salmonella serovars Enteritidis and Typhi. The LAMP-ELISA assay used a serogroup D/A-specific primer set to amplify a region of the prt gene, followed by hybridization of the digoxigenin-labeled products to a highly specific oligonucleotide probe for exact identification of serogroup D serovars. Among the bacteria tested, a positive reaction was only observed for strains belong to Salmonella serogroup D. The detection limit of the LAMP-ELISA assay was 4 CFU per tube, which was lower than PCR-ELISA assay with the same target gene (50 CFU per tube). Finally, the technique was successfully applied to an artificially contaminated meat sample with a detection limit 103 CFU mL−1, which was 10 times more sensitive than PCR-ELISA. Overall, the LAMP-ELISA assay could be used as a sensitive alternative method to PCR-ELISA for the specific detection of Salmonella serogroup D serovars in routine food microbiology or clinical laboratories worldwide.  相似文献   

12.
A double stranded DNA based fluorescence bioprobe for anticancer agent (doxorubicin) detection is described. This method provides a new way for sensitive DNA/drug interaction study by a homogeneous assay. The probe employs the long-wavelength intercalating fluorophore TOTO-3® (TT3). The anticancer agent, doxorubicin, which interacts with the DNA-TT3 complex, was indirectly measured by the decrease in the fluorescence intensity. Various oligonucleotides with different sequences were examined. Doxorubicin has preference for the oligonucleotide 5′AGCACG3′. Enhanced fluorescence observed for the TT3 intercalation with this oligonucleotide makes the DNA-dye complex a suitable bioprobe for doxorubicin detection by competitive assay. A home-built CCD camera setup was applied along with 384 well plate assay format for high throughput fluorescence imaging. The detection limit can be as low as 25 ng mL−1 with an upper limit of 100 μg mL−1. The recovery test with spiked serum sample shows that this method can be a potential routine method for therapeutic drug monitoring (TDM).  相似文献   

13.
A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 106 cells mL−1 with a detection limit of 40 cells mL−1 was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 105 with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.  相似文献   

14.
15.
《Electroanalysis》2017,29(3):828-834
A simple and rapid electrochemical aptamer cytosensor has been developed for direct detection of chronic myelogenous leukemia (CML) K562 cells based on a specific aptamer and a biotin conjugated concanavalin A (bio‐ConA) detection probe. The K562 cell could be specifically recognized by T2‐KK1B10 capture aptamer pre‐immobilized on gold modified electrode surface. Then, bio‐ConA was added in the reaction to identify K562 cell surface mannose, resulting in an aptamer‐K562 cell‐bio‐ConA sandwich complex. Finally, streptavidin conjugated alkaline phosphatase (ST‐ALP) combined with the bio‐ConA to catalyze α‐naphthyl (α‐NP) phosphate to form α‐naphthol which is highly electroactive at an operating voltage of 180 mV (vs. Ag/AgCl). Under optimum conditions, the DPV signals were proportional to the logarithm of K562 cell from 1×102 to 1×107 cells mL−1 with a detection limit of 79 cells mL−1. The cytosensor also exhibited high selectivity, stability and reproducibility. When applied to detect K562 cells in human blood samples, recoveries between 79.6 %–93.3 % were obtained, indicating the developed biosensor would be a potential alternative tool for CML K562 cell detection in real biological samples.  相似文献   

16.
As one of the active compounds derived from Traditional Chinese Medicine,Celastrol(CSL)had cytotoxicity for human leukemia cancer cells K562 and its multidrug-resistant cell line K562/A02.Here,we introduced cysteamine-modified CdTe QDs as the labeling and drug carrier into CSL research and found that the self-assembly and conjugation of anticancer molecular CSL with the Cys-CdTe QDs could significantly increase the drug’s cytotoxicity for K562 cells.More important,these CSL-Cys-CdTe nanocomposites could overcome the multidrug resistance of K562/A02 cells and efficiently inhibit the cancer cell proliferation by realizing the pH-sensitive responsive release of CSL to cancer cells.The enhanced cytotoxicity was caused by the increase of the G2/M phase arrest for K562/A02 cells as well as for K562 cells.Cys-CdTe QDs can readily bind on the cell plasma membranes and be internalized into cancer cells to trace and detect human leukemia cancer cells in real time.In addition,these Cys-CdTe QDs can facilitate the inhibition of the multidrug resistance of K562/A02 cells and readily induce apoptosis.As a good photosensitizer for the therapy,labeling,and tracing of cancer cells,the combination of CSL with Cys-CdTe QDs can optimize the use of and a new potential therapy method for CSL and yield new tools to explore the mechanisms of active compounds from Traditional Chinese Medicine.  相似文献   

17.
The electrochemical detection of cell lines of MCF-7 (human breast cancer) has been reported, using magnetic beads for the separation tool and high-affinity DNA aptamers for signal recognition. The high specificity was obtained by using the magnetic beads and aptamers, and the good sensitivity was realized with the signal amplification of DNA capped CdS or PbS nanocrystals. The ASV (anodic stripping voltammetry) technology was employed for the detection of cadmic cation and lead ions, for electrochemical assay of the amount of the target cells and biomarkers on the membrane of target cells, respectively. This electrochemical method could respond to as low as 100 cells mL−1 of cancer cells with a linear calibration range from 1.0 × 102 to 1.0 × 106 cells mL−1, showing very high sensitivity. Moreover, the amounts of HER-3 which were overexpressed on MCF-7 cells were calculated correspond to be 3.56 × 104 anti-HER-3 antibody molecules. In addition, the assay was able to differentiate between different types of target and control cells based on the aptamers and magnetic beads used in the assay, indicating the wide applicability of the assay for early and accurate diagnose of cancers.  相似文献   

18.
A rapid method for the identification and quantification of l-ascorbic acid in wines by direct injection liquid chromatography equipped with a UV detection was developed. The levels of ascorbic acid were determined using a polymeric PLRP-S 100 A (5 μm) column (150 mm × 4.6 mm) with a mobile water/trifluoroacetic acid (99/1, v/v) phase. The method is rapid (less than 5 min) and sensitive (LOQ of 5 mg L−1). The calibration curve of ascorbic acid was linear (r = 0.999) over a concentration range between 1 and 200 mg L−1. Repeatability was less than 2.5% and the recovery over 95%.  相似文献   

19.
An electrochemical DNA detection method for the phosphinothricin acetyltransferase (PAT) gene sequence from the transgenetic plants was established by using a microplate hybridization assay with cadmium sulfide (CdS) nanoparticles as oligonucleotides label. The experiment included the following procedures. Firstly target PAT ssDNA sequences were immobilized on the polystyrene microplate by physical adsorption. Then CdS nanoparticle labeled oligonucleotide probes were added into the microplate and the hybridization reaction with target ssDNA sequences took place in the microplate. After washing the microplate for three times, certain amounts of HNO3 were added into the microplate to dissolve the CdS nanoparticles anchored on the hybrids and a solution containing Cd2+ ion was obtained. At last differential pulse anodic stripping voltammetry (DPASV) was used for the sensitive detection of released Cd2+ ion. Based on this principle a sensitive electrochemical method for the PAT gene sequences detection was established. The voltammetric currents of Cd2+ were in linear range with the target ssDNA concentration from 5.0 × 10− 13 to 1.0 × 10− 10 mol/L and the detection limit was estimated to be 8.9 × 10− 14 mol/L (3σ). The proposed method showed a good promise for the sensitive detection of specific gene sequences with good selectivity for the discrimination of the mismatched sequences.  相似文献   

20.
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au–thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer–AuNPs–HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1 × 102 to 1 × 107 cells mL−1 and high sensitivity with a low detection limit of 30 cells mL−1. Furthermore, after the electrochemical detection, the activation potential of −0.9 to −1.7 V was performed to break Au–thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号