首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method, based on the use of a quadrupole-based inductively coupled plasma-mass spectrometry instrument equipped with a quadrupole-based collision/reaction cell (dynamic reaction cell, DRC), was developed for the simultaneous determination of phosphorus, calcium and strontium in bone and dental (enamel and dentine) tissue. The use of NH3, introduced at a gas flow rate of 0.8 mL min− 1 in the dynamic reaction cell, combined with a rejection parameter q (RPq) setting of 0.65, allows interference-free determination of calcium via its low-abundant isotopes 42Ca, 43Ca and 44Ca, and of strontium via its isotopes 86Sr and 88Sr that are freed from overlap due to the occurrence of ArCa+ and/or Ca2+ ions. Also the determination of phosphorus (31P, mono-isotopic) was shown to be achievable using the same dynamic reaction cell operating conditions. The bone certified reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were used for validation of the measurement protocol that was shown capable of providing accurate and reproducible results. Detection limits of P, Ca and Sr in dental tissue digests were established as 3 µg L− 1 for P, 2 µg L− 1 for Ca and 0.2 µg L− 1 for Sr. This method can be used to simultaneously (i) evaluate the impact of diagenesis on the elemental and isotopic composition of buried skeletal tissue via its Ca/P ratio and (ii) determine its Sr concentration. The measurement protocol was demonstrated as fit-for-purpose by the analysis of a set of teeth of archaeological interest for their Ca/P ratio and Sr concentration.  相似文献   

2.
A method for the determination of sixteen elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sn, V, Zn) in seafood by dynamic reaction cell inductively coupled plasma mass spectrometry (ICP–DRC–MS) is presented. A preliminary study of polyatomic interferences was carried out in relation to the chemical composition of marine organisms belonging to different taxa. Acid effects and other matrix effects in marine organisms submitted to closed-vessel microwave digestion were investigated as well. Ammonia was the reactive gas used in the DRC to remove polyatomic ions interfering with 27Al, 52Cr, 56Fe and 51V. Optimal conditions for the simultaneous determination of analytes were identified in order to develop a fast multielement method. A suite of real samples (mussels and various fish species) were used during method development along with three certified reference materials: BCR CRM 278R (mussel tissue), BCR CRM 422 (cod muscle) and DORM-2 (dogfish muscle). The proposed analytical approach can be used in conjunction with suitable chemometric procedures to address quality and safety issues in aquaculture and fisheries. As an example, a case study is described in which mussels from three farming sites in the Venice Lagoon were distinguished by multivariate analysis of element fingerprints.   相似文献   

3.
A low pressure microwave assisted vapor phase dissolution procedure for silicon nitride and volatilization of in situ generated SiF4 has been developed using H2SO4, HF and HNO3 for the determination of trace impurities present in silicon nitride. Sample was taken in minimum amount (0.5 mL for 100 mg) of H2SO4 and treated with vapors generated from HF and HNO3 mixture in presence of microwaves in a closed container. An 80 psi pressure with ramp and hold times of 30 min and 60 min respectively, operated twice, resulted in 99.9% volatilization of Si. Matrix free solutions were analyzed for impurities using DRC-ICP-MS. The recoveries of Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Y, Cd, Ba and Pb were between 80 and 100% after volatilization of Si. The blanks were in lower ng g−1 with method detection limits in lower ng g−1 to sub ng g−1 range. The method was applied for the analysis of two silicon nitride samples.  相似文献   

4.
An inductively coupled plasma mass spectrometer (ICP–MS) equipped with a dynamic reaction cell (DRC) was used for the determination of Ca and P in foodstuffs. In this study, two different reaction gases, CH4 and O2, were introduced successively through the different channels to alleviate different interferences in the same analysis run. The effect of the operating conditions of the DRC system was studied to get the best signal-to-noise ratio for each element. The interfering 40Ar+ at m/z 40 was reduced in intensity by up to five orders of magnitude by using 1.0 mL min–1 CH4 as reaction cell gas in the DRC. On the other hand, by using O2 as the reaction gas, 31P+ was converted to 31P16O+ that could be detected at m/z 47 where there was less interference. The limits of detection for Ca and P were 0.2 ng mL–1 and 0.3 ng mL–1, respectively. This method was used to determine the concentrations of Ca and P and the ratio of Ca to P in NIST SRM 1549 non-fat milk powder and NIST RM 8345 whole milk powder reference materials and an infant milk powder and an infant cereal-rice sample purchased locally. The results for the reference samples agreed satisfactorily with the reference values. The accuracy of the determination was better than 4.1 and 0.9% for Ca and P, respectively. The results for infant milk powder and infant cereal were also found to be in good agreement with the value on the bottle label. Precision (RSD) between sample replicates was better than 4.8% for all the determinations.  相似文献   

5.
Capillary electrophoresis dynamic reaction cell™ inductively coupled plasma mass spectrometry (CE-DRC-ICP-MS) for the determination of sulfur-containing amino acids is described. The sulfur-containing amino acids studied include l-cysteine, l-cystine, dl-homocystine and l-methionine. The species studied were well separated using a 70 cm length×75 μm i.d. fused silica capillary while the applied voltage was set at +22 kV and a 10 mmol l−1 disodium tetraborate buffer (pH 9.8) containing 0.1 mmol l−1 EDTA and 0.5 mmol l−1 Triton X-100 was used as the electrophoretic buffer. The sulfur-selective electropherogram was determined at m/z 48 as by using its reaction with O2 in the reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by and on by detecting as the oxide ion at m/z 48, which is less interfered. The detection limit of various species studied was in the range of 0.047-0.058 μg S ml−1, which corresponded to the absolute detection limit of 1.3-1.6 pg S based on the injection volume of 27 nl. We determined the concentrations of selected sulfur-containing amino acids in urine and nutritive complement samples. The recovery was in the range of 92-128% for various species.  相似文献   

6.
An inductively coupled plasma mass spectrometer (ICP-MS) equipped with a dynamic reaction cell™ (DRC) was used for the determination of Ca, Fe and Zn in milk powder samples. The effect of the operating conditions of the DRC system was studied to get the best signal-to-noise (S/N) ratio. The potentially interfering 40Ar+, 40Ar16O+, 40Ca16O+, 48Ca16O+ and 32S16O16O+ at the masses m/z 40, 56 and 64 were reduced in intensity significantly by using CH4 as the reaction cell gas in the DRC while a q-value of 0.7 was used. The limits of detection for 40Ca, 56Fe and 64Zn estimated from the external calibration graphs were 1, 0.01 and 0.001 ng ml−1, respectively, which correspond to 1000, 10 and 1 ng g−1 in the original powder sample. This method was applied to the determination of Ca, Fe and Zn in NIST SRM 1549 non-fat milk powder and two milk powder samples purchased locally. The results for the reference sample agreed satisfactorily with the reference values; the accuracy of the determination was better than 3.8, 18 and 2.2% for Ca, Fe and Zn, respectively. The results for which no reference value was available were also found to be in good agreement between different isotopes. Precision (R.S.D.) between sample replicates was better than 10% for all the determinations.  相似文献   

7.
Li Y  Pradhan NK  Foley R  Low GK 《Talanta》2002,57(6):1143-1153
A new method for determining ultra-trace levels of hexavalent chromium in ambient air has been developed. The method involves a 24-h sampling of air into potassium hydroxide solution, followed by silica gel column separation of chromium (VI), then preconcentration by complexation and solvent extraction. The chromium (VI) complex was dissolved in nitric acid. The resultant chromium ions were determined by inductively coupled plasma mass spectrometry (ICP–MS) using a dynamic reaction cell (DRC) with ammonia as the reactive gas to reduce polyatomic interferences. The interconversion of chromium in potassium hydroxide solution and air sample matrix were investigated under ambient conditions. It was found that there was no conversion of chromium (VI) into chromium (III) species. However, it was observed that some chromium (III) species were converted into chromium (VI) species. For a KOH solution containing 100 μg l−1 of chromium (III) species, the rate of conversion was found to be 3% after 24 h exposure, 8% after 48 h, 10% after 72 h and no further conversion was observed thereafter. However, in a solution containing air sample matrix, 9.3% of chromium (III) converted to chromium (VI) within 6 h, and during the course of a 11-day exposure period, 13% (range 8–17%) of chromium (III) converted to chromium (VI). The method detection limit (MDL) for chromium (VI) in potassium hydroxide solution (0.025 M) was found to be 2×10−2 μg l−1. This is equivalent to 0.2 ng m−3 (for 23 m3 air sampled into 200 ml of KOH solution over a 24-h period). The recovery of spiked chromium (VI) from solutions containing air sample matrix was 95±9% (n=8). Matrix related interferences were estimated to be less than 10% based on recovery studies. The concentration of airborne chromium (VI) in Sydney residential areas was found to be less than 0.2 ng m−3, however, in industrial areas the concentrations ranged from 0.2 to 1.3 ng m−3 using this analytical procedure.  相似文献   

8.
In the direct ICP-MS determination of Cd in feed samples, significant spectral interferences caused by high concentrations of Mo can play an important role. In the present study, Mo based oxide or hydroxide polyatomic interferences were eliminated by dynamic reaction cell (DRC) with O2 as reaction gas. Some other oxide or hydroxide interferences (i.e. Zr and Ru) were simultaneously reduced by this technology. These potentially interfering polyatomic ions 95Mo16O+, 94Mo16OH+, 94Zr16OH+, 98Mo16O+, 98Ru16O+ and 97Mo16OH+ on 111Cd+ and 114Cd+ were oxidized to higher oxides MoO2+, MoO3+, MoO4+, RuO3+, RuO4+, MoO2H+, MoO3H+, ZrO2H+ and ZrO3H+. The rejection parameter q (RPq) of DRC and the flow rate of O2 were optimized and set at 0.75 and 2.0 ml min− 1, respectively. In addition, the residual isobaric interference of 114Sn on 114Cd was corrected using a mathematical correction equation. The limit of quantitation (LOQ) for 111Cd or 114Cd was 0.8 or 1.0 ng g− 1 and the analysis results of NIST 1567a wheat flour and 1568a rice flour standard reference materials were in good agreement with the certified values. As the routine cadmium monitoring method in our laboratory, the proposed method was applied to the accuracy determination of 562 pig feed samples for the Monitoring of Central Meat Reserves (CMR) of China.  相似文献   

9.
A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l.  相似文献   

10.
In this work estimation of measurement uncertainties associated with the total metal content in soils was done by an intralaboratory approach based on method validation and quality control data, and using two certified reference materials (CRM). CRM and soil samples were analyzed following procedures based on the methods that are applied to silicate materials. All elements were determined by atomic absorption spectrometry following a quality assurance program previously established. Quality control actions were implemented in order to provide reliable data. The precision under within-laboratory reproducibility conditions was estimated from triplicate analysis. The trueness component was determined as recovery of the analyte from CRMs: soil sample, SO-2 and river clay sediment, LGC 6139. Combined measurement uncertainty was expressed in terms of precision and recovery uncertainties and the later further split on CRM replicate analysis and uncertainty of the certified value components. The results obtained are critically discussed on the basis of the different contributions. For the selection of the reference material, the CRM dependent terms are critically compared in order to fulfill specific requirements. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
A.J. Bednar 《Talanta》2009,78(2):453-247
Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have included the addition of interference reduction technologies, such as collision and reaction cells, to improve its detection capability for certain elements that suffer from polyatomic interferences. The principle behind reaction cell (RC)-ICP-MS is to remove a particular polyatomic interference by dissociation or formation of a different polyatomic species that no longer interferes with the analyte of interest. However, some interferences cannot be removed by commonly reported reaction gases, such as hydrogen, oxygen, or methane, necessitating using more reactive and hazardous gases, such as ammonia. The current study investigates oxygen as a reaction gas in RC-ICP-MS to specifically react with vanadium analyte ions, rather than the interferents, to produce a polyatomic analyte species and thereby provide a way to analyze for vanadium in complex environmental matrices. The technique has been tested on a series of river water, tap water, and synthetic laboratory samples, and shown to be successful in vanadium analyses in high chloride and sulfate matrices. The zinc isobaric interference on the new vanadium oxide analyte at m/z 67 is also investigated, and can be corrected by using a standard mathematical correction equation. The results of this study further increase the utility of RC-ICP-MS analytical techniques for complex environmental matrices.  相似文献   

12.
A method for the determination of ultratrace amounts of Cr, Fe, Mn, Pb and Zn in seawater has been developed. It combined the low-blank magnesium hydroxide coprecipitation procedure with quadrupole inductively coupled plasma mass spectrometry and used the dynamic reaction cell technique to resolve the polyatomic interferences arising from the residual matrix, the solvent and plasma gases. Detection limits (3σB, n = 10) for Cr, Fe, Mn, Pb and Zn were 0.02, 0.10, 0.01, 0.002 and 0.19 nM, respectively, using 50 mL of seawater sample. The accuracy of the analytical procedure was verified by the analysis of the seawater reference materials CASS-4, NASS-5, SAFe D2 and SAFe S. The analytical precision ranged from 3% to 16% (n = 6), with a sample throughput of about 6 samples h−1.  相似文献   

13.
A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulization system (APEX-IR) was employed to determine 17 elements (Al, As, Ba, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, V, and Zr) in blood samples. Ammonia (for Al, Cr, Mn, and V) and O2 (for As and Se) were used as reacting gases. Selection of the best flow rate of the gases and optimization of the quadrupole dynamic bandpass tuning parameter (RPq) were carried out, using digested blood diluted 1 + 9 with deionized water and spiked with 1 μg L−1 of Al, Cr, Mn, V and 5 μg L−1 of As and Se. Detection limits were determined in digested blood using the 3σ criterion. The desolvating system allowed a sufficient sensitivity to be achieved to determine elements at levels of ng L−1 without detriment of signal stability. The accuracy of the method was tested with the whole blood certified reference material (CRM), certified for Al, As, Cd, Co, Cr, Mn, Mo, Ni, Pb, Sb, Se, and V, and with indicative values for Ba, Li, Sn, Sr, and Zr. The addition calibration approach was chosen for analysis. In order to confirm the DRC data, samples were also analyzed by means of sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), operating in medium (mm = 4000) and high (mm = 10,000) resolution mode and achieving a good agreement between the two techniques.  相似文献   

14.
Slurry sampling electrothermal vaporization (ETV) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to determine As and Se in soil and sludge samples. The influences of instrument operating conditions and slurry preparation on the ion signals were reported. Pd and ascorbic acid were used as mixed modifiers to enhance the ion signals. The effectiveness of ETV sample introduction technique for alleviating various spectral interferences in ICP-MS analysis has been demonstrated. This method has been applied to determine As and Se in NIST SRM 2709 San Joaquin soil reference material and NIST SRM 2781 domestic sludge reference material and a farmland soil sample collected locally. Since the sensitivities of As and Se in slurry solution and aqueous solution were different, analyte addition technique was used to determine As and Se in these samples. The As and Se analysis results of the reference materials agreed with the certified values. The precision between sample replicates was better than 5% for all determinations. The method detection limit estimated from analyte addition curves was about 0.03 and 0.02 μg g−1 for As and Se, respectively, in original soil and sludge samples.  相似文献   

15.
A new sensitive methodology for the determination of total reduced sulfur species in natural waters and acid volatile sulfides in sediments at low levels (μg L− 1) is described. Reduced sulfur species were separated from the water matrix in the form of H2S after reaction with hydrochloric acid in a commercial vapor generator coupled to an inductively coupled plasma quadrupole mass spectrometer (VG–ICP–QMS) equipped with a reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by 16O16O+ and 14N18O+ through the elimination of the aqueous matrix, a source of oxygen. By introducing a mixture of helium and hydrogen gases into the octopole reaction cell, a series of ion-molecule reactions were induced to reduce the interfering polyatomic species. Operating conditions of the octopole reaction cell system and the analyzer were optimized to get the best signal to background ratio for 32S; a full factorial 23 experimental design was developed in order to evaluate which variables had a significant effect and a simplex methodology was applied to find the optimum conditions for the variables. The new method was evaluated by comparison to the standard potentiometric method. The analytical methodology developed was applied to the analysis of reduced sulfur species in natural waters and acid volatile sulfides in sea sediments.  相似文献   

16.
Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS–ETV–DRC–ICP–MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC–ICP–MS. The precision between sample replicates was better than 17% with the USS–ETV–DRC–ICP–MS method. The method detection limits, estimated from standard addition curves, were about 6–9, 1–2 and 8–11 ng g−1 for Cr, Cd and Pb, respectively, in the original plastic samples.  相似文献   

17.
A rapid method based on gas chromatography-mass spectrometry was developed for analysis of four volatile arsenic species: arsine, monomethylarsine (MMA), dimethylarsine (DMA) and trimethylarsine (TMA). With the proposed method gaseous arsenic species could be determined in less than 2 min and no pre-treatment for gas phase samples was needed, which minimized the risks of species conversion before analysis. The detection limits for different species were 24–174 pg. The standards for arsine, MMA and DMA were prepared by reaction between arsenic acid, monomethylarsonic acid or dimethylarsinic acid with tetrahydroborate(III) and nitric acid. The effect of pH on recovery of different arsine species was examined and is discussed. The TMA was obtained commercially as liquid. Also stability of inorganic (arsine) and organic (TMA) gaseous arsenic species in air was studied as a function of time.  相似文献   

18.
电感耦合等离子体质谱法测定花生中34种元素   总被引:3,自引:0,他引:3  
建立了微波消解-碰撞/反应池(ORS)电感耦合等离子体质谱仪(ICP-MS)同时测定花生中的Na、Mg、Ca、Fe、Se、Mo和稀土元素等34种元素的分析方法。样品经微波消解后,在线加入内标元素45Sc、72Ge、103Rh、115In和209Bi消除基体效应,应用碰撞反应池技术,以4.5 mL/min流速的氦气作为碰撞反应气,有效消除多原子离子产生的质谱干扰。各元素的检出限为0.0003~17.37ng/mL,相对标准偏差(RSD)低于2.9%;标准物质的测定值均在标准值范围内,结果令人满意。该方法可用于花生中多种元素的同时测定。  相似文献   

19.
采用封闭酸溶电感耦合等离子体质谱(ICP-MS)法测定岩石样品,分别对47种元素的测量结果不确定度进行评定。通过分析测试方法和测量条件,得到测量结果的不确定度主要由样品称量、样品溶液定容和样品溶液中元素浓度测量引入。在实验室质控条件下,对各不确定度分量进行评定和计算,其中随机因素导致的不确定度采用期间精密度试验综合评价,即采用A类方法评定。共完成了16个岩石国家标准物质(GBW 07103~GBW 07123)47种元素测量结果的不确定度合成,并参照GB/T 6379.2-2004,建立了含量w与扩展不确定度U之间的关系模型,运用这一关系模型可得到测量结果的不确定度估计值,只要测量过程本身或所使用的设备未变化,就不需要再重复进行不确定度评估。  相似文献   

20.
Slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (ETV-DRC-ICP-MS) has been applied to determine Fe, Co, Ni, Cu, and Zn in biological samples. The influences of instrument operating conditions and slurry preparation on the ion signals were reported. Pd was used as the modifier. The effectiveness of the ETV sample introduction technique and dynamic reaction cell in alleviating various spectral interferences in ICP-MS analysis has been demonstrated. This method has been applied to determine Fe, Co, Ni, Cu, and Zn in NIST SRM 1573a tomato leaves reference material and NRCC DORM-2 dogfish muscle reference material and also real samples such as a tea and a swordfish sample purchased locally. Since the sensitivities of the elements studied in slurry and aqueous solution were different, an analyte addition technique was used for the determinations. The analytical results of the reference materials agreed with the certified values. The precision between sample replicates was better than 6% for all determinations. The method detection limit estimated from analyte addition curves was 0.01, 0.006, 0.007, 0.004, and 0.006 μg g−1 for Fe, Co, Ni, Cu, and Zn, respectively, in the original biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号