首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

2.
制备了两种表面Schiff碱及其Cu2+、Co2+、Ni2+、Zn2+配合物,考察了它们对H2O2分解的催化性能,其活性顺序为:Co2+>Cu2+>Ni2+>Zn2+,且与金属离子氧化还原电位有关。溶液的pH值增加有利于催化反应,有机配体的加入则对反应有所抑制。  相似文献   

3.
The complex formation between a new synthesized Schiff base and the cations Ni2+, Co2+, Cu2+, Zn2+ in dichloromethane (DCM) and chloroform solutions was investigated spectrophotometrically using rank annihilation factor analysis (RAFA). The results of mole ratio plots and continuous variation data show the stoichiometry of complexation were found to be 1:1, and 2:1 metal ion to ligand. The stoichiometry was obtained as 1:1 metal ion to ligand ratio for Co2+, Ni2+ and Zn2+ in chloroform and 2:1 for Cu2+. In DCM the stoichiometry was obtained as 1:1 for Co2+ and 2:1 for Ni2+ and Zn2+ and a consecutive 2:1 metal ion to ligand ratio was obtained for Cu2+. Formation constants of these complexes were estimated by application of RAFA on spectrophotometric data. In this process the contribution of ligand was removed from the absorbance data matrix when the complex stability constant acts as an optimizing object and simply combined with the pure spectrum of the ligand, the rank of the original data matrix can be reduced by one by annihilating the information of the ligand from the original data matrix.  相似文献   

4.
A new series of the polydentate Schiff base CuII, CoII, NiII, PdII and ZnII complexes derived from ethylenediamine (eda), diethylenetriamine (dea) and tris(2-aminoethyl)amine (taa) have been prepared by template condensation in MeOH solution, and characterized by i.r., electronic spectral data, elemental analyses, conductivity and magnetic measurements. The 1H- and 13C-n.m.r. and mass spectral data of the NiII, PdII and ZnII complexes have been recorded. In all complexes, some of the chloride ions coordinate to the metal ions. From conductivity measurements, it is shown that the complexes are electrolytes. The NiII, PdII and ZnII complexes have diamagnetic character. In this study, the Schiff base CuII and CoII complexes have sub-normal magnetic moments commensurate with their binuclear or tetranuclear nature. Some show antimicrobial activity against bacteria and yeast.  相似文献   

5.
Herein, we report the synthesis of eight new mononuclear and binuclear Co2+, Ni2+, Cu2+, and Zn2+ methoxy thiosemicarbazone (MTSC) complexes aiming at obtaining thiosemicarbazone complex with potent biological activity. The structure of the MTSC ligand and its metal complexes was fully characterized by elemental analysis, spectroscopic techniques (NMR, FTIR, UV-Vis), molar conductivity, thermogravimetric analysis (TG), and thermal differential analysis (DrTGA). The spectral and analytical data revealed that the obtained thiosemicarbazone-metal complexes have octahedral geometry around the metal center, except for the Zn2+-thiosemicarbazone complexes, which showed a tetrahedral geometry. The antibacterial and antifungal activities of the MTSC ligand and its (Co2+, Ni2+, Cu2+, and Zn2+) metal complexes were also investigated. Interestingly, the antibacterial activity of MTSC- metal complexes against examined bacteria was higher than that of the MTSC alone, which indicates that metal complexation improved the antibacterial activity of the parent ligand. Among different metal complexes, the MTSC- mono- and binuclear Cu2+ complexes showed significant antibacterial activity against Bacillus subtilis and Proteus vulgaris, better than that of the standard gentamycin drug. The in silico molecular docking study has revealed that the MTSC ligand could be a potential inhibitor for the oxidoreductase protein.  相似文献   

6.
The data on competitive binding of ligands in metal complexes with ambidentate ligands (Schiff bases and -aminovinylketones) were summarized. Special attention is given to chemical and electrochemical syntheses and structural study of novel chelates of heterocyclic enaminoketones with antipyrine substituent that form tetrahedral (Cu2+, Zn2+) or octahedral (Co2+, Ni2+) structures.  相似文献   

7.
A series of new binucleating CoII, NiII, CuII, and ZnII complexes of bicompartmental ligands with SNO donors was prepared. The Schiff bases were obtained by the condensation of 4,6-diacetylresorcinol and mercapto-substituted 1,2,4-triazoles. The ligands and their complexes were characterized by elemental analysis, infrared, 1H-NMR, UV-Vis, FAB-mass, and ESR spectral studies, magnetic susceptibility, and conductivity measurements. All the complexes were monomeric and binuclear. NiII and CoII complexes were octahedral, whereas CuII and ZnII complexes were square planar and tetrahedral, respectively. The compounds are investigated for electrochemical activity.  相似文献   

8.
The extraction of ammine complexes of Cu2+, Cd2+, Ni2+, Co2+ and Zn2+ by synthesised manganese, nickel and zinc silicates has been studied at different pH and ionic concentrations in the external solution. It has been found that the uptake of the metal ion Co2+, Cu2+ and Zn2+ increases with increase in pH of the external solution, attains a maximum and then decreases. However, the uptake for Cd2+ and Ni2+ increases continuously. The qA values of all the silicates increases with the increase in the concentration of the exchanging ion and its order for the investigated metal ions is Ni2+ < Co2+ < Cd2+ < Zn2+ < Cu2+.  相似文献   

9.
A new dioxime ligand, N,N-bis(2-{[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]amino} ethyl)N′,N′-dihydroxyethanediimidamide (H2L), and its mononuclear complexes with Co2+, Ni2+, Cu2+, Zn2+ and Cd2+ are synthesized. H2L forms transition metal complexes [Co(LH)2(H2O)2] and [M(LH)2] (M = Ni2+, Cu2+) with a metal : ligand ratio of 1 : 2. Complexes [M(H2L)(Cl)2] (Zn2+, Cd2+) have a metal : ligand ratio of 1 : 1. The mononuclear Co2+, Ni2+, and Cu2+ complexes indicate that the metal ions coordinate ligand through its two N atoms, as the most of dioximes. In the Co2+ complex, two water molecules and in the Zn2+ and Cd2+ complexes two chloride ions are also coordinated to the metal ion. The structures of these compounds are identified by elemental analyses, IR, 1H and 13C NMR, electronic spectra, magnetic susceptibility measurements, conductivity, and thermogravimetric analysis.__________From Koordinatsionnaya Khimiya, Vol. 31, No. 7, 2005, pp. 540–544.Original English Text Copyright © 2005 by Canpolat, Kaya.The text was submitted by the authors in English.  相似文献   

10.
Two tridentate Schiff bases having ONS and NNS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) (SBDTC) with pyridine-2-carboxaldehyde and salicylaldehyde, respectively. Complexes of these ligands with NiII, ZnII, CrIII, CoII, CuII, and SnII were studied and characterized by elemental analyses and various physico-chemical techniques. NiII, CuII, ZnII and SnII complexes were four-coordinate while the CrIII, SrIII and CoIII complexes were six-coordinate. The ONS Schiff base was moderately active against leukemia, while its zinc, antimony and cobalt complexes were strongly active against leukemic cells with DC50 = 0.35–5.00.  相似文献   

11.
Guo  Yan-He  Ge  Qing-Chun  Lin  Hua-Kuan  Zhu  Shou-Rong  Lin  Hai 《Transition Metal Chemistry》2004,29(1):42-45
The coordination properties of two C3-symmetry hexaza tripods, 1,3,5-tri(2,5-diazahexyl)benzene (L1) and 1,3,5-tri(2,5-diazaheptyl)benzene (L2), towards Zn2+, Cu2+, Ni2+ and Co2+ ions, studied by potentiometric techniques, are reported. Both ligands form quite stable complexes either in a 1:1 or 1:3 M:L stoichiometry, presenting a preferential coordination order: Zn2+ < Cu2+ > Ni2+ > Co2+. It is observed that the different configurations of metal complexes are achieved due to the fact that tripodal ligands are flexible and not constrained into a rigid geometry.  相似文献   

12.
The mordenite samples loaded with divalent nitrates of Mn, Co, Ni, Cu, Zn and Cd were investigated using FTIR and scanning electron microscopy (SEM) methods. It was found from FTIR spectra that in 3000-4000 cm−1 region of mordenite samples with similar water concentration ions, Mn2+, Co2+, Cu2+, and Zn2+ tend to break hydrogen bonds formed between water molecules and zeolite framework, whereas Ni2+ and Cd2+ accommodate to hydrogen bonds. From SEM results it was concluded, that ions Mn2+, Co2+, Zn2+ form innersphere complexes with oxygens from Brönsted acid sites, whereas Ni2+ and Cd2+ associate with Brönsted acid sites without exchange of protons.  相似文献   

13.
Mononuclear Mn2+ and Cu2+, - VO2+, Co2+, Ni2+, - and Zn2+ complexes of a synthetic novel hydrazone containing a quinoline moiety were prepared. The composition and structure of the prepared compounds were elucidated by spectral and analytical techniques. The results reveal that all complexes were formed in 1:1 mole ratio except Mn2+ and Cu2+ complexes ( 3 ) and ( 7) , which were formed in 1 M:2 L mole ratio. It was also found that the ligand binds the metal ions via NO donor sites as a monobasic bidentate chelator in all complexes through the enolic carbonyl oxygen and azomethine nitrogen atoms. The electronic absorption spectra and magnetic moment data demonstrated square pyramidal and octahedral geometries for the VO2+ and Ni2+ complexes, respectively, while the other complexes adopted tetrahedral geometry. The thermal decomposition of the complexes was discussed in relation to structure. The thermal analysis data demonstrated that all complexes were decomposed in one, two, three or four stages starting with the dehydration process, removal of coordination water molecules or elimination of anions and ended with the formation of the metal oxide. The bactericidal activities of the prepared compounds demonstrated that hydrazone ( 1) exerted a highly inhibitory effect against B. subtilis while VO2+, Co2+, and Cu2+ complexes ( 2) , ( 4) , and ( 7) showed an inhibitory effect against E. coli more than the tetracycline. Additionally, the inhibitory effect of the prepared compound against A. niger showed that the Cu2+ complex ( 6) is the most active while the Ni2+, Cu2+, and Zn2+ complexes ( 5–8) exhibited an extremely inhibitory effect against C. albicans.  相似文献   

14.
Summary CuII, NiII, CoII, ZnII and PdII complexes of tridentate Schiff base ligands derived from the condensation of benzoic acid hydrazides with 2-aminonicotinaldehyde have been prepared and characterized. For M=Cu, Ni, Co and Zn the complexes were formulated as [M(ligand)(H2O)X] (X=Cl, Br), with a distorted octahedral geometry and tridentate Schiff base ligands. The Pd complexes were formulated as Pd(ligand)Cl2, with square planar geometries and bidentate Schiff base ligands. The e.s.r. spectra of the CuII complexes are discussed.  相似文献   

15.
To investigate the relationship between antimicrobial activities and the formation constants of CuII, NiII and CoII complexes with three Schiff bases, which were obtained by the condensation of 2-pyridinecarboxyaldehyde with DL-alanine, DL-valine and DL-phenylalanine, have been synthesized. Schiff bases and the complexes have been characterized on the basis of elemental analyses, magnetic moments (at ca. 25 °C), molar conductivity, thermal analyses and spectral (i.r., u.v., n.m.r.) studies. The i.r. spectra show that the ligands act in a monovalent bidentate fashion, depending on the metal salt used and the reaction pH = 9, 8 and 7 medium, for CuII, NiII and CoII, respectively. Square-planar, tetrahedral and octahedral structures are proposed for CuII, NiII and CoII, respectively. The protonation constants of the Schiff bases and stability constants of their ML-type complexes have been calculated potentiometrically in aqueous solution at 25 ± 0.1 °C and at 0.1 M KCl ionic strength. Antimicrobial activities of the Schiff bases and the complexes were evaluated for three bacteria (Bacillus subtillis, Staphylococcus aureus, and Escherichia coli) and a yeast (Candida albicans). The structure–activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability contants.  相似文献   

16.
Conditional stability constants of coordination complexes comprising divalent transition metals, Cu2+, Ni2+, Zn2+, Co2+, and ethylenediaminetetraacetic acid (EDTA) were determined utilizing electrospray ionization mass spectrometry. The deviation of signal response of a reference complex was monitored at addition of a second metal ion. The conditional stability constant for the competing metal was then determined through solution equilibria equations. The method showed to be applicable to a system where Co2+ and Zn2+ competed for EDTA at pH 5. When Cu2+ and Ni2+ competed for EDTA, the equilibrium changed over time. This change was shown to be affected in rate and size by the type of organic solvent added. In this work, 30% of either methanol or acetonitrile was used. It was found that if calibration curves are prepared for both metal complexes in solution and the measurements are repeated with sufficient time space, any change in equilibrium of sample solutions will be discovered. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A flow injection analysis system for on-line preconcentration and simultaneous determination of Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ in aqueous samples by inductively coupled plasma (ICP)-atomic emission spectrometry with a charge coupled detector is described. The preconcentration of analytes is accomplished by retention of their chelates with sodium diethyldithiocarbamate in aqueous solution on a solid phase containing octadecyl silica in a minicolumn. Methanol, as eluent, is introduced into the conventional nebulizer of the ICP instrument. The effects of different parameters, including preconcentration flow rate (equal to sample flow rate (SR)), eluent flow rate (ER), weight of solid phase (W) and eluent loop volume (EV), were optimized by the super-modified simplex method. The optimum conditions were evaluated to be SR 7.2 ml min−1, ER 3.5 ml min−1, W of 100 mg and EV of 0.8 ml. An enrichment factor of 312.5 for each analyte was obtained. The detection limits of the proposed method for Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ were evaluated as 1.3, 1.0, 0.8, 0.3, 14.7, 0.5, 5.5 and 0.1 ng l−1, respectively. The effect of several metal ions on percent recovery was also studied. The method was applied to the recovery of these heavy metals from real matrices and to the simultaneous determination of these cations in different water samples.  相似文献   

18.
Cobaltocenium carboxylate is an unusual betaine that functions as a formally neutral carboxylate ligand with late transition metal centers comprising Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Rh+. Structurally, a rich coordination chemistry is observed – from simple monomeric homoleptic complexes to heteroleptic dimeric, trimeric, and polymeric compounds, as shown by X‐ray diffraction of 11 compounds. Chemically, thermal decarboxylation was investigated aiming at the formation of cobaltocenium‐carbene transition metal complexes, in analogy to such chemistry of imidazolium carboxylate betaines. Cytotoxicity studies of cobaltocenium carboxylate transition metal complexes were performed to evaluate the medicinal bioorganometallic potential of these compounds. While cobaltocenium carboxylate was inactive, its complexes with Ag+, Cd2+, and Hg2+ triggered significant cytotoxic effects.  相似文献   

19.
The reduction of the 2-cyclohexen-1-one, mediated by some transition metal ions (Zn2+, Cu2+, Ni2+, Co2+ and Fe2+) and complexes ([NiII(bipy)]Br2 and [FeII(bipy)]Br2, where bipy = 2,2′-bipyridine), was carried out by using a homogeneous electromediated system: sacrificial anode, nickel cathode, (0.2 M) NaI as supporting electrolyte and undivided cell. A constant current of <100 mA was applied with a maximum cell potential of 2.0 V. Cyclohexanone was the principal product in major cases yielding 98%. Cyclohexanol was also detected in some cases. The selectivity of the process can be controlled by choosing Ni as mediator and Zn or Ni as sacrificial anode. A more reactive system can be reached when Fe sacrificial anode is used, giving cyclohexanol as major product (87%).  相似文献   

20.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号