首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach for a simple electrochemical detection of PAT gene fragment is described. Poly(2,6-pyridinedicarboxylic acid) (PDC) modified glassy carbon electrode (GCE) was prepared by potential scan electropolymerization in an aqueous solution. Mg2 ions were incorporated by immer-sion of the modified electrode in 0.5 mol/L aqueous solution of MgCl2 to complete the preparation of a generic "activated" electrode ready for binding the probe DNA. The ssDNA was linked to the conduct-ing polymer by forming a bidentate complex between the carboxyl groups on the polymer and the phosphate groups of DNA via Mg2 . DNA immobilization and hybridization were characterized with dif-ferential pulse voltammetry (DPV) by using methylene blue (MB) as indicator and electrochemical im-pedance spectroscopy (EIS). The EIS was of higher sensitivity for DNA detection as compared with voltammetric methods in our strategy. The electron transfer resistance (Ret) of the electrode surface in EIS in [Fe(CN)6]3-/4- solution increased after the immobilization of the DNA probe on the Mg/PDC/GCE electrode. The hybridization of the DNA probe with complementary DNA (cDNA) made Ret increase further. The difference between the Ret at ssDNA/Mg/PDC/GCE and that at hybridization DNA modified electrode (dsDNA/Mg/PDC/GCE) was applied to determine the specific sequence related to the target PAT gene with the dynamic range comprised between 1.0 × 10-9 and 1.0 × 10_5 mol/L. A detection limit of 3.4 × 10-10 mol/L of oligonucleotides can be estimated.  相似文献   

2.
A novel electrochemical method is developed for detection of DNA demethylation and assay of DNA demethylase activity. This method is constructed by hybridizing the probe with biotin tagged hemi-methylated complementary DNA and further capturing streptavidin tagged alkaline phosphatase (SA-ALP) to catalyze the hydrolysis reaction of p-nitrophenyl phosphate. The hydrolysate of p-nitrophenol (PNP) is then used as electrochemical probe for detecting DNA demethylation and assaying the activity of DNA demethylase. Demethylation of target DNA initiates a degradation reaction of the double-stranded DNA (dsDNA) by restriction endonuclease of BstUI. It makes the failed immobilization of ALP, resulting in a decreased electrochemical oxidation signal of PNP. Through the change of this electrochemical signal, the DNA demethylation is identified and the activity of DNA demethylase is analyzed with low detection limit of 1.3 ng mL−1. This method shows the advantages of simple operation, cheap and miniaturized instrument, high selectivity. Thus, it provides a useful platform for detecting DNA demethylation, analyzing demethylase activity and screening inhibited drug.  相似文献   

3.
We report preparation of a novel platform for effective DNA hybridization and its application to the detection of single mismatched DNA. Cone-shaped dendrimer molecules have been immobilized on the gold surface at equidistance, 3.1 nm, from each other with a probe DNA molecule attached to the top of each dendrimer so that enough space would be secured for effective hybridization. This arrangement allows each probe DNA molecule to form a natural DNA double helix upon hybridization with a target DNA molecule. The single nucleotide polymorphism at either the central or end position of the 25-mer target DNA has been shown to be effectively discriminated against on this platform from each other as well as from a complementary DNA by electrochemical impedance measurements. We also report adverse effects exerted by probe ions, Fe(CN)63−/4−, on DNA hybridization reactions. The significance of the results for the use in DNA analysis is discussed.  相似文献   

4.
In this study, we synthesized molybdenum disulfide/polyaniline (MoS2/PANI) nanocomposite via in situ polymerization of aniline in the presence of thin-layered MoS2. The as-prepared MoS2/PANI nanocomposite obtained an improved electrochemical performance due to the physisorption interaction between aromatic aniline and the basal plane of MoS2. Furthermore, we constructed a new kind of electrochemical sensor based on MoS2/PANI nanocomposite for the detection of chloramphenicol, which showed an excellent performance. The sensor has a high sensitivity and wide detection range from 1×10-7 mol/L to 1×10-4 mol/L, with a low detection limit of 6.9×10-8 mol/L.  相似文献   

5.
A highly sensitive and label-free impedimetric biosensor is achieved based on an adjunct probe attached nearby the capture probe. In this work, the adjunct probe was co-assembled on the surface of gold electrode with the capture probe hybridized with the reporter probe, and then 6-mercapto-1-hexanol was employed to block the nonspecific binding sites. When target DNA was added, the adjunct probe functioned as a fixer to immobilize the element of reporter probe displaced by the target DNA sequences and made the reporter probe approach the electrode surface, leading to effective inhibition of charge transfer. The increase in charge transfer resistance is related to the quantity of the target DNA in a wide range. The linear range for target DNA with specific sequences was from 0.1 nM to 0.5 μM with a good linearity (R = 0.9988) and a low detection limit of 6.3 pM. This impedimetric biosensor has the advantages of simplicity, sensitivity, good selectivity, and large dynamic range.  相似文献   

6.
A rapid and sensitive DNA targets detection using enzyme amplified electrochemical detection (ED) based on microchip was described. We employed a biotin‐modified DNA, which reacted with avidin‐conjugated horseradish peroxidase (avidin–HRP) to obtain the HRP‐labeled DNA probe and hybridized with its complementary target. After hybridization, the mixture containing dsDNA‐HRP, excess ssDNA‐HRP, and remaining avidin–HRP was separated by MCE. The separations were performed at a separation voltage of +1.6 kV and were completed in less than 100 s. The HRP was used as catalytic labels to catalyze H2O2/o‐aminophenol reaction. Target DNA could be detected by the HRP‐catalyzed reduction with ED. With this protocol, the limits of quantification for the hybridization assay of 21‐ and 39‐mer DNA fragments were of 8×10?12 M and 1.2×10?11 M, respectively. The proposed method has been applied satisfactorily in the analysis of Escherichia coli genomic DNA. We selected the detection of PCR amplifications from the gene of E. coli to test the real applicability of our method. By using an asymmetric PCR protocol, we obtained ssDNA targets of 148 bp that could be directly hybridized by the single‐stranded probe and detected with ED.  相似文献   

7.
A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K+ induces the Ap-DNA to form a K+-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6]3−/4−) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.  相似文献   

8.
We use colloidal Au to enhance the DNA immobilization amount on a gold electrode and ultimately lower the detection limit of our electrochemical DNA biosensor. Self-assembly of approximately 16-nm diameter colloidal Au onto a cysteamine modified gold electrode resulted in an easier attachment of an oligonucleotide with a mercaptohexyl group at the 5′-phosphate end, and therefore an increased capacity for nucleic acid detection. Quantitative results showed that the surface densities of oligonucleotides on the Au colloid modified gold electrode were approximately (1–4)×1014 molecules cm−2. Hybridization was induced by exposure of the ssDNA-containing gold electrode to ferrocenecarboxaldehyde labeled complementary ssDNA in solution. The detection limit is 5×10−10 mol l−1 of complementary ssDNA, which is much lower than our previous electrochemical DNA biosensors. The Au nanoparticle films on the Au electrode provide a novel means for ssDNA immobilization and sequence-specific DNA detection.  相似文献   

9.
In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (Rct) and signifying “signal-on” behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4 pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.  相似文献   

10.
Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.  相似文献   

11.
巯基乙酸自组装膜DNA电化学传感器对转基因NOS的定量检测   总被引:5,自引:1,他引:5  
以转基因植物中常用的根癌农杆菌终止子(NOS)为检测对象, 将巯基乙酸自组装于金电极表面形成巯基乙酸自组装单分子膜, 再利用乙基-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)的活化作用将NOS探针ssDNA序列固定于金电极表面形成NOS电化学生物传感器, 以亚甲基蓝(MB)为杂交指示剂, 对NOS靶基因相关序列进行了定量检测.  相似文献   

12.
In the present study, we investigated the properties of PNA and LNA capture probes in the development of an electrochemical hybridization assay. Streptavidin-coated paramagnetic micro-beads were used as a solid phase to immobilize biotinylated DNA, PNA and LNA capture probes, respectively. The target sequence was then recognized via hybridization with the capture probe. After labeling the biotinylated hybrid with a streptavidin–enzyme conjugate, the electrochemical detection of the enzymatic product was performed onto the surface of a disposable electrode. The assay was applied to the analytical detection of biotinylated DNA as well as RNA sequences. Detection limits, calculated considering the slope of the linear portion of the calibration curve in the range 0–2 nM were found to be 152, 118 and 91 pM, coupled with a reproducibility of the analysis equal to 5, 9 and 6%, calculated as RSD%, for DNA, PNA and LNA probes respectively, using the DNA target. In the case of the RNA target, the detection limits were found to be 51, 60 and 78 pM for DNA, PNA and LNA probes respectively.  相似文献   

13.
Chen Z  Li L  Zhao H  Guo L  Mu X 《Talanta》2011,83(5):4039-1506
A simple, highly sensitive, and label-free electrochemical impedance spectroscopy (EIS) aptasensor based on an anti-lysozyme-aptamer as a molecular recognition element, was developed for the detection of lysozyme. Improvement in sensitivity was achieved by utilizing gold nanoparticles (AuNPs), which were electrodeposited onto the surface of a gold electrode, as a platform for immobilization of the aptamer. To quantify the amount of lysozyme, changes in the interfacial electron transfer resistance (Ret) of the aptasensor were monitored using the redox couple of an [Fe(CN)6]3−/4− probe. The Ret increased with lysozyme concentration. The plot of Ret against the logarithm of lysozyme concentration is linear over the range from 0.1 pM to 500 pM with a detection limit of 0.01 pM. The aptasensor also showed good selectivity for lysozyme without being affected by the presence of other proteins.  相似文献   

14.
Xiao F  Zhang N  Gu H  Qian M  Bai J  Zhang W  Jin L 《Talanta》2011,84(1):204-211
Sudan I monoclonal antibodies (Mabs) were prepared by hybridoma technique and firstly used to develop a Sudan I immunosensor by immobilizing the Mabs on a gold electrode. o-Mercaptobenzoic acid (MBA) was covalently conjugated on the gold electrode to form a self-assembled monolayer (SAM). The immobilization of Sudan I Mabs to the SAM was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the SAM. The changes of the electrode behavior after each assembly step were investigated by cyclic voltammetric (CV) technique. The Sudan I concentration was measured through the increase of impedance values in the corresponding specific binding of Sudan I and Sudan I antibody. A linear relationship between the increased electron-transfer resistance (Ret) and the logarithmic value of Sudan I concentrations was found in the range of 0.05-50 ng mL−1 with the detection limit of 0.03 ng mL−1. Using hot chili as a model sample, acceptable recovery of 96.5-107.3% was obtained. The results were validated by conventional HPLC method with good correlation. The proposed method was proven to be a feasible quantitative method for Sudan I analysis with the properties of stability, highly sensitivity and selectivity.  相似文献   

15.
以室温固相合成法制备纳米ZnO,通过壳聚糖(CHIT)的成膜效应将纳米ZnO固定在玻碳电极(GCE)表面,制得的ZnO/CHIT/GCE电极成为DNA固定和杂交的良好平台。DNA的固定和杂交通过电化学交流阻抗进行表征。以电化学交流阻抗免标记法检测目标DNA,固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测人类免疫缺陷病毒(HIV)基因片段的线性范围为2.0×10-11~2.0×10-6mol/L,检出限为2.0×10-12mol/L。  相似文献   

16.
A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip.  相似文献   

17.
The core-shell structured Au@Bi2S3 nanorods have been prepared through direct in-situ growth of Bi2S3 at the surface of pre-synthesized gold nanorods.The product was characterized by X-ray diffraction,transmission electron microscopy and energy-dispersive X-ray spectroscopy.Then the obtained Au@Bi2S3 nanorods were coated onto glassy carbon electrode to act as a scaffold for fabrication of electrochemical DNA biosensor on the basis of the coordination of-NH2 modified on 5’-end of probe DNA and Au@Bi2S3.Electrochemical characterization assays demonstrate that the Au@Bi2S3 nanorods behave as an excellent electronic transport channel to promote the electron transfer kinetics and increase the effective surface area by their nanosize effect.The hybridization experiments reveal that the Au@Bi2S3 matrix-based DNA biosensor is capable of recognizing complementary DNA over a wide concentration ranging from 10 fmol/L to 1 nmol/L.The limit of detection was estimated to be 2 fmol/L(S/N=3).The biosensor also presents remarkable selectivity to distinguish fully complementa ry sequences from basemismatched and non-complementary ones,showing great promising in practical application.  相似文献   

18.
Heavy-metal pollution has attracted intensive attention from the public because of the severe threats of heavy metals to the ecosystem and human health. Ultralow concentration of heavy metals in aquatic environment leads to the urgent needs of sensitive approaches for heavy-metal detection. Electrochemical DNA biosensors present outstanding superiority in convenience, selectivity, and sensitivity compared with conventional methods. To achieve the ultralow detection limit, efforts have been made to implement signal enhancement strategies to develop electrochemical DNA biosensors with enhanced sensing performance. This review focuses on the recent progress in signal enhancement strategies applied to electrochemical DNA biosensors for heavy-metal-ion detection including nicking enzyme–assisted amplification, the utilization of core–shell nanoparticles, and nanocomposites modification.  相似文献   

19.
Lithium manganese oxide powders were prepared via combustion reaction. Structural characterization of the powder using X-ray diffraction and scanning electron microscopy confirmed the formation of a LiMn2O4 nanosized powder. LiMn2O4 films were prepared by spin coating using 80 wt% of oxide, 15 wt% of polyaniline (PAni) as an electronic conductor and 5 wt% of polyvinylidene (PVDF) as a binder in N.N.-dimethyl acetamide. A Coulombic efficiency of 96% confirmed the electrochemical stability of the composite. The variation in impedance as a function of the lithium intercalation/deintercalation process reflected the interaction between the oxide and/or polyaniline particles at a high frequency range, and a diffusion tendency was observed at medium and low frequency ranges. The capacity values of the composite electrodes relative to the LiMn2O4 mass were 178.6/177.5 and 145/140 mAh g−1 for the first and 25th charge/discharge cycles, respectively.  相似文献   

20.
This paper describes a disposable indicator-free electrochemical DNA biosensor applied to the detection of apolipoprotein E (apoE) sequences in PCR samples. In the indicator-free assays, the duplex formation was detected by measuring the electrochemical signal of the guanine base of nucleic acids. The biosensor format involved the immobilisation of an inosine-modified (guanine-free) probe onto a screen-printed electrode (SPE) transducer and the detection of the duplex formation in connection with the square-wave voltammetric measurement of the oxidation peak of the guanine of the target sequence.The indicator-free scheme has been characterised using 23-mer oligonucleotides as model: parameters affecting the hybridisation assay such as probe immobilisation conditions, hybridisation time, use of hybridisation accelerators were examined and optimised.The analysis of PCR samples (244 bp DNA fragments, obtained by amplification of DNA extracted from human blood) required a further optimisation of the experimental procedure. In particular, a lower steric hyndrance of the probe modified surface was essential to allow an efficient hybridisation of the target DNA fragment. Negative controls have been performed using the PCR blank and amplicons unrelated to the immobilised probe. A 10 min hybridisation time allowed a full characterisation of each sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号