首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

2.
This study established a flow injection (FI) methodology for the determination of the total phenolic content in plant-derived beverages based on soluble manganese(IV) chemiluminescence (CL) detection. It was found that mixing polyphenols with acidic soluble manganese(IV) in the presence of formaldehyde evoked chemiluminescence. Based on this finding, a new FI-CL method was developed for the estimation of the total content of phenolic compounds (expressed as milligrams of gallic acid equivalent per litre of drink) in a variety of wine, tea and fruit juice samples. The proposed method is sensitive with a detection limit of 0.02 ng mL−1 (gallic acid), offers a wide linear dynamic range (0.5-400 ng mL−1) and high sample throughput (247 samples h−1). The relative standard deviation for 15 measurements was 3.8% for 2 ng mL−1 and 0.45% for 10 ng mL−1 of gallic acid. Analysis of 36 different samples showed that the results obtained by the proposed FI-CL method correlate highly with those obtained by spectrophotometric methods commonly used for the evaluation of the total phenolic/antioxidant level. However, the FI-CL method was found to be far simpler, more rapid and selective, with almost no interference from non-phenolic components of the samples examined.  相似文献   

3.
Two liquid-phase microextraction procedures: single-drop microextraction (SDME) and dispersive liquid-liquid microextraction (DLLME), have been developed for the determination of several endocrine-disrupting phenols (EDPs) in seawaters, in combination with high-performance liquid chromatography (HPLC) with UV detection. The EDPs studied were bisphenol-A, 4-cumylphenol, 4-tertbutylphenol, 4-octylphenol and 4-n-nonylphenol. The optimized SDME method used 2.5 μL of decanol suspended at the tip of a micro-syringe immersed in 5 mL of seawater sample, and 60 min for the extraction time. The performance of the SDME is characterized for average relative recoveries of 102 ± 11%, precision values (RSD) < 9.4% (spiked level of 50 ng mL−1), and detection limits between 4 and 9 ng mL−1. The optimized DLLME method used 150 μL of a mixture acetonitrile:decanol (ratio 15.7, v/v), which is quickly added to 5 mL of seawater sample, then subjected to vortex during 4 min and centrifuged at 2000 rpm for another 5 min. The performance of the DLLME is characterized for average relative recoveries of 98.7 ± 3.7%, precision values (RSD) < 7.2% (spiked level of 20 ng mL−1), and detection limits between 0.2 and 1.6 ng mL−1. The efficiencies of both methods have also been compared with spiked real seawater samples. The DLLME method has shown to be a more efficient approach for the determination of EDPs in seawater matrices, presenting enrichment factors ranging from 123 to 275, average relative recoveries of 110 ± 11%, and precision values (RSD) < 14%, when using a real seawaters (spiked level of 3.5 ng mL−1).  相似文献   

4.
The present article reports on the application of modified multiwalled carbon nanotubes (MMWCNTs) as a new, easily prepared and stable solid sorbent for the preconcentration of trace rhodium ion in aqueous solution. Rhodium ions were complexed with 1-(2-pyridylazo)-2-naphthol (PAN) in the pH range of 3.2-4.7 and then the formed Rh-PAN complex was adsorbed on the oxidized MWCNTs. The adsorbed complex was eluted from MWCNTs sorbent with 5.0 mL of N,N-dimethylformamide (DMF). The rhodium in eluted solution was determined by flame atomic absorption spectrometry (FAAS). Linear range for the determination of rhodium was maintained between 0.16 ng mL−1 and 25.0 μg mL−1 in initial solution. Relative standard deviation for the 10 replicated determination of 4.0 μg mL−1 of rhodium was ±0.97%. Detection limit was 0.010 ng mL−1 in initial solution (3Sbl, n = 10) and preconcentration factor was 120. Sensitivity for 1% absorbance of rhodium (III) was 0.112 μg mL−1. The sorption capacity of oxidized MWCNTs for Rh (III) was 6.6 mg g−1. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions were studied for the preconcentration of Rh3+. The proposed method was successfully applied to the extraction and determination of rhodium in different samples.  相似文献   

5.
Xu D  Liu S  Liu Z  Hu X 《Analytica chimica acta》2007,588(1):10-15
A flow injection analysis (FIA) method coupled to resonance Rayleigh scattering (RRS) detection for the determination of verapamil hydrochloride (VP) was proposed. In pH 1.0 acidic medium, 12-tungstophosphoric acid (TP) reacted with VP to form an ion-association complex, which resulted in a significant enhancement of RRS intensity. The maximum scattering peak was located at 293 nm. RRS intensity was proportional to the concentration of VP in the range of 0.017-13.0 μg mL−1, and the detection limit (3σ) was 5.1 ng mL−1. The proposed method exhibited satisfactory reproducibility with a relative standard derivation (R.S.D.) of 2.1% for 11 successive determinations of 5.0 μg mL−1 VP. Therefore, a novel method for the determination of VP by FIA-RRS was developed. The optimum reaction conditions and the parameters of the FIA operation such as flow rate, injection volume, reactor length, and so on had been optimized in this paper. The present method had been applied to the determination of VP in serum samples and pharmaceuticals with satisfactory results. The maximal sample throughput in the optimized system was 80 h−1.  相似文献   

6.
In the present work a method for the determination of mercury at trace levels by energy dispersive X-ray fluorescence (EDXRF) is introduced. Mercury ions were concentrated on cation selective membranes that have been prepared on Mylar® thin film substrate, immobilized on plastic cups. The produced membranes were immersed in water solutions containing low concentrations of mercury. The membranes were left to equilibrate in 1000 mL of mercury solutions and were analyzed by EDXRF. The effects of various experimental parameters were examined. Minimum detection limits of pg mL−1 (ppt) (0.069 ng mL−1 for ASTM Type I water and 0.064 ng mL−1 for seawater) and good linearity were achieved.  相似文献   

7.
Abdorreza Mohammadi 《Talanta》2009,78(3):1107-1114
A simple and rapid headspace solid-phase microextraction (HS-SPME) based method is presented for the simultaneous determination of atrazine and ametryn in soil and water samples by ion mobility spectrometry (IMS). A dodecylsulfate-doped polypyrrole (PPy-DS), synthesized by electrochemical method, was applied as a laboratory-made fiber for SPME. The HS-SPME system was designed with a cooling device on the upper part of the sample vial and a circulating water bath for adjusting the sample temperature. The extraction properties of the fiber to spiked soil and water samples with atrazine and ametryn were examined, using a HS-SPME device and thermal desorption in injection port of IMS. Parameters affecting the extraction efficiency such as the volume of water added to the soil, pH effect, extraction time, extraction temperature, salt effect, desorption time, and desorption temperature were investigated. The HS-SPME-IMS method with PPy-DS fiber, provided good repeatability (RSDs < 10 %), simplicity, good sensitivity and short analysis times for spiked soil (200 ng g−1) and water samples (100 and 200 ng mL−1). The calibration graphs were linear in the range of 200-4000 ng g−1 and 50-2800 ng mL−1 for soil and water respectively (R2 > 0.99). Detection limits for atrazine and ametryn were 37 ng g−1 (soil) and 23 ng g−1 (soil) and 15 ng mL−1 (water) and 10 ng mL−1 (water), respectively. To evaluate the accuracy of the proposed method, atrazine and ametryn in the three kinds of soils and two well water samples were determined. Finally, comparing the HS-SPME results for extraction and determination of selected triazines using PPy-DS fiber with the other methods in literature shows that the proposed method has comparable detection limits and RSDs and good linear ranges.  相似文献   

8.
A sensitive and selective column adsorption method is proposed for the preconcentration and determination of atrazine and simazine. Atrazine and simazine were preconcentrated on heat-treated diatomaceous earth as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recoveries of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 2 using 100 mL of validation solution containing 1.5 μg of triazines and 5 mL of ethanol as an eluent. Recoveries of atrazine and simazine were 95.7 ± 4.2% and 75.0 ± 1.9% with a relative standard deviation for seven determinations of 4.7% and 2.7% under optimum conditions. The maximum preconcentration factor was 100 for triazines when 500 mL of sample solution volume was used. The linear ranges of calibration curves for atrazine and simazine were 1-150 ng mL−1 and 1-300 ng mL−1, respectively, with correlation coefficients of 0.999 and the detection limits (3Signal-to-Noise) were 0.24 ng mL−1 and 0.21 ng mL−1 for atrazine and simazine. The capacity of the adsorbent was also examined and found to be 0.8 mg g−1 and 1.3 mg g−1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of triazines in river water and tap water samples with high precision and accuracy.  相似文献   

9.
A new procedure was described with multiwalled carbon nanotubes as solid phase extraction packing material for the trace analysis of nicosulfuron, thifensulfuron and metsulfuron-methyl in water samples. The possible parameters influencing the enrichment were optimized and the optimal conditions were as followed: eluent, sample pH, flow rate and sample volume were acetonitrile containing 1% acetic acid, pH 3, 8 mL min−1 and 500 mL, respectively. Under the optimal chromatographic separation and SPE conditions, the linear range, detection limit (S/N = 3) and precision (R.S.D., n = 6) were 0.04-40 ng mL−1, 6.8 ng L−1 and 2.5% for nicosulfuron, 0.04-40 ng mL−1, 11.2 ng L−1 and 5.4% for thifensulfuron, 0.02-20 ng mL−1, 5.9 ng L−1, 2.1% for metsulfuron-methyl, respectively. The established method was well employed to determine nicosulfuron, thifensulfuron and metsulfuron-methyl in tap water, seawater, reservoir water and well water samples, and satisfactory results were obtained, the spiked recoveries in the range of 87.2-100.7%, 96.5-105.6% and 83.7-111.1% for them each, respectively.  相似文献   

10.
An integrated electrochemical hydride generation cell, mainly composed of three components (a gas liquid separator, a graphite tube cathode and a reticulate Pt wire anode), was laboratory constructed and employed for the detection of arsenic by coupling to atomic fluorescence spectrometry. This integrated cell was free of ion-exchange membrane and individual anolyte, with the virtues of low-cost, easy assembly and environmental-friendly. Using flow injection mode, the sample throughput could come to 120 h−1 attributed to the small dimension of the cathode chamber. The operating conditions for the electrochemical hydride generation of arsenic were investigated in detail and the potential interferences from oxygen or various ions were also evaluated. Under the optimized conditions, no obvious oxygen quenching effects were observed. The limit of detection of As (III) for the sample blank solution was 0.2 ng mL−1 (3σ) and the relative standard deviation was 3.1% for nine consecutive measurements of 5 ng mL−1 As (III) standard solution. The calibration curve was linear up to 100 ng mL−1. The accuracy of the method was verified by the determination of arsenic in the reference materials GBW08517 (Laminaria Japonica Aresch) and GBW10023 (Porphyra crispata) and the developed method was successfully applied to determine trace amounts of arsenic in edible seaweeds.  相似文献   

11.
Fong BM  Tam S  Tsui SH  Leung KS 《Talanta》2011,83(3):1030-1036
A sensitive analytical method for the determination of tetrodotoxin (TTX) in urine and plasma matrices was developed using double solid phase extraction (C18 and hydrophilic interaction liquid chromatography) and subsequent analysis by HPLC coupled with tandem mass spectrometry. The double SPE sample cleanup efficiently reduced matrix and ion suppression effects. Together with the use of ion pair reagent in the mobile phase, isocratic elution became possible which enabled a shorter analysis time of 5.5 min per sample. The assay results were linear up to 500 ng mL−1 for urine and 20 ng mL−1 for plasma. The limit of detection and limit of quantification were 0.13 ng mL−1 and 2.5 ng mL−1, respectively, for both biological matrices. Recoveries were in the range of 75-81%. To eliminate the effect of dehydration and variations in urinary output, urinary creatinine-adjustment was made. TTX was quantified in eight urine samples and seven plasma samples from eight patients suspected of having TTX poisoning. TTX was detected in all urine samples, with concentrations ranging from 17.6 to 460.5 ng mL−1, but was not detected in any of the plasma samples. The creatinine-adjusted TTX concentration in urine (ranging from 7.4 to 41.1 ng μmol−1 creatinine) correlated well with the degree of poisoning as observed from clinical symptoms.  相似文献   

12.
In this work, a simple, rapid and sensitive sample pretreatment technique, dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD), has been developed to determine carbamate (carbaryl) and organophosphorus (triazophos) pesticide residues in water and fruit juice samples. Parameters, affecting the DLLME performance such as the kind and volume of extraction and dispersive solvents, extraction time and salt concentration, were studied and optimized. Under the optimum extraction conditions (extraction solvent: tetrachloroethane, 15.0 μL; dispersive solvent: acetonitrile, 1.0 mL; no addition of salt and extraction time below 5 s), the performance of the proposed method was evaluated. The enrichment factors for the carbaryl and triazophos were 87.3 and 275.6, respectively. The linearity was obtained in the concentration range of 0.1-1000 ng mL−1 with correlation coefficients from 0.9991 to 0.9999. The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 12.3 to 16.0 pg mL−1. The relative standard deviations (RSDs, for 10 ng mL−1 of carbaryl and 20 ng mL−1 of triazophos) varied from 1.38% to 2.74% (n = 6). The environmental water (at the fortified level of 1.0 ng mL−1) and fruit juice samples (at the fortified level of 1.0 and 5.0 ng mL−1) were successfully analyzed by the proposed method, and the relative recoveries of them were in the range of 80.4-114.2%, 89.8-117.9% and 86.3-105.3%, respectively.  相似文献   

13.
Determination of estrogens in water by HPLC-UV using cloud point extraction   总被引:1,自引:0,他引:1  
Wang L  Cai YQ  He B  Yuan CG  Shen DZ  Shao J  Jiang GB 《Talanta》2006,70(1):47-51
A method based on cloud point extraction was developed to determine four kinds of estrogens: estriol (E3), estradiol (E2), estrone (E1), and progesterone (P) in water by high performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extractant solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na2SO4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, preconcentration factors of 99 for E3, 73 for E2, 152 for E1 and 86 for P were obtained for 10 mL water sample. The detection of limitation was 0.23 ng mL−1 for E3, 0.32 ng mL−1 for E2, 0.25 ng mL−1 for E1 and 5.0 ng mL−1 for P. The proposed method was successfully applied to the determination of trace amount of estrogens in wastewater treatment plant (WWTP) effluent water and exposure water with 10 ng mL−1 E2 for toxicological study in our lab. For the case of WWTP effluent water samples, no estrogen was found. The accuracy of the proposed method was tested by recovery measurements of spiked samples and good recoveries of 81.2-99.5% were obtained.  相似文献   

14.
This paper presents the development of a new flow-injection system combined with solid-surface fluorescence detection for the determination of the widely used fungicide thiabendazole. Nylon powder was probed as a novel solid support for building the optosensor. The method is based on the on-line immobilization of thiabendazole onto nylon in a continuous flow system, followed by the measurement of its native fluorescence. Aqueous samples are directly injected in a water carrier, resulting in a very simple and economical method. The analytical figures of merit obtained using 1500 μL of sample and 75% methanol (v/v) as eluting solution were: linear calibration range from 8 to 120 ng mL−1 (the lowest value corresponds to the quantitation limit), relative standard deviation, 0.9% (n = 5) at a level of 64 ng mL−1, limit of detection calculated according to 1995 IUPAC recommendations is to 2.8 ng mL−1, and sampling rate of 14 samples h−1. The potential interference from other agrochemicals, metal ions and common anions, and the viability of determining thiabendazole in real water samples were also evaluated.  相似文献   

15.
A rapid and solvent-free method for the determination of eight volatile organic sulphur and two selenium compounds in different beverage samples using headspace solid-phase microextraction and gas chromatography with atomic emission detection has been developed. The bonded carboxen/polydimethylsiloxane fiber was the most suitable for preconcentrating the analytes from the headspace of the sample solution. Volumes of 20 mL of undiluted beer were used while, in the case of wines and spirits, sample:water ratios of 5:15 and 2:18, respectively, were used, in order to obtain the maximum sensitivity. Quantitation was carried out by using synthetic matrices of beer and wine, and a spiked sample for spirits, and using ethyl methyl sulphide and isopropyl disulphide as internal standards. Detection limits ranged from 8 ng L−1 to 40 ng mL−1, depending on the compound and the beverage sample analyzed, with a fiber time exposure of 20 min at ambient temperature. The optimized method was successfully applied to different samples, some of the studied compounds being detected at concentration levels in the 0.04–152 ng mL−1 range.  相似文献   

16.
In this paper a novel solid phase extraction method to determine Co(II) and Ni(II) using silica gel-polyethylene glycol (Silica-PEG) as a new adsorbent is described. The method is based on the adsorption of cobalt and nickel ions in alkaline media on polyethylene glycol-silica gel in a mini-column, elution with nitric acid and determination by flame atomic absorption spectrometry. The adsorption conditions such as NaOH concentration, sample volume and amount of adsorbent were optimized in order to achieve highest sensitivity. The calibration graph was linear in the range of 0.5-200.0 ng mL−1 for Co(II) and 2.0-100.0 ng mL−1 for Ni(II) in the initial solution. The limit of detection based on 3Sb was 0.37 ng mL−1 for Co(II) and 0.71 ng mL−1 for Ni(II). The relative standard deviations (R.S.D.) for ten replicate measurements of 40 ng mL−1 of Co(II), and Ni(II) were 3.24 and 3.13%, respectively. The method was applied to determine Co(II) and Ni(II) in black tea, rice flour, sesame seeds, tap water and river water samples.  相似文献   

17.
Li Y  Wei G  Hu J  Liu X  Zhao X  Wang X 《Analytica chimica acta》2008,615(1):96-103
A simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME), has been developed for the extraction and preconcentration of polybrominated diphenyl ethers (PBDEs) in water samples. The factors influencing microextraction efficiencies, such as the kind and volume of extraction and dispersive solvent, the extraction time and the salt effect, were optimized. Under the optimum conditions (sample volume: 5 mL; extraction solvent: tetrachloroethane, 20.0 μL; dispersive solvent: acetonitrile, 1.00 mL; extraction time: below 5 s and without salt addition), the enrichment factors and extraction recoveries were high and ranged from 268 to 305 and 87.0 to 119.1%, respectively. Linearity was observed in the range 0.05-50 ng mL−1 for BDE-28 and BDE-99, and 0.1-100 ng mL−1 for BDE-47 and BDE-209, respectively. Coefficients of correlation (r2) ranged from 0.9995 to 0.9999. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 50 ng mL−1 for BDE-28 and BDE-99, and 100 ng mL−1 for BDE-47 and BDE-209, respectively. The relative standard deviations (R.S.D.s) varied between 3.8 and 6.3% (n = 5). The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 12.4 to 55.6 pg mL−1 (the wavelength of detector at 226 nm). The relative recoveries of PBDEs from tap, lake water and landfill leachate samples at spiking levels of 5, 10 and 50 ng mL−1 were in the range of 89.7-107.6%, 114.3-119.1% and 87.0-90.9%, respectively. As a result, this method can be successfully applied for the determination of PBDEs in landfill leachate and environmental water samples.  相似文献   

18.
A novel method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. A mixture of extraction solvent (41 μL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) were rapidly injected into 5.0 mL aqueous sample for the formation of cloudy solution, the analytes in the sample were extracted into the fine droplets of CCl4. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 5 to 5000 ng mL−1 for target analytes. The enrichment factors for DMP, DEP and DnBP were 45, 92 and 196, respectively, and the limits of detection were 1.8, 0.88 and 0.64 ng mL−1, respectively. The relative standard deviations (R.S.D.) for the extraction of 10 ng mL−1 of phthalate esters were in the range of 4.3-5.9% (n = 7). Lake water, tap water and bottled mineral water samples were successfully analyzed using the proposed method.  相似文献   

19.
A new method for solid-phase extraction and preconcentration of trace amounts Hg(II) from environmental samples was developed by using sodium dodecyle sulphate-coated magnetite nanoparticles (SDS-coated Fe3O4 NPs) as a new extractant. The procedure is based on the adsorption of the analyte, as mercury-Michler's thioketone [Hg2(TMK)4]2+ complex on the negatively charged surface of the SDS-coated Fe3O4 NPs and then elution of the preconcentrated mercury from the surface of the SDS-coated Fe3O4 NPs prior to its determination by flow injection inductively coupled plasma-optical emission spectrometry. The effects of pH, TMK concentration, SDS and Fe3O4 NPs amounts, eluent type, sample volume and interfering ions on the recovery of the analyte were investigated. Under optimized conditions, the calibration curve was linear in the range of 0.2-100 ng mL−1 with r2 = 0.9994 (n = 8). The limit of detection for Hg(II) determination was 0.04 ng mL−1. Also, relative standard deviation (R.S.D.) for the determination of 2 and 50 ng mL−1 of Hg(II) was 5.2 and 4.7% (n = 6), respectively. Due to the quantitative extraction of Hg(II) from 1000 mL of the sample solution an enhancement factor as large as 1230-fold can be obtained. The proposed method has been validated using a certified reference materials, and also the method has been applied successfully for the determination of Hg(II) in aqueous samples.  相似文献   

20.
A novel sample preparation method, vial wall sorptive extraction (VWSE), which uses a vial whose internal wall is coated with polydimethylsiloxane (PDMS), was developed. The method was applied to the determination of progesterone in human serum sample. Human serum sample (0.5 mL) spiked with progesterone-13C2 was pipetted into the VWSE device and vortex mixing was performed for 30 min. Then, the serum sample was removed and the vial rinsed with purified water. Fifty microliter of methanol as liquid desorption (LD) solvent was pipetted into the VWSE device and vortex mixing was performed for 10 min. Then, the extract was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The correlation coefficient (r) of the calibration curve over the concentration range of 0.5–200 ng mL−1 was 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.1 and 0.5 ng mL−1, respectively. The relative recoveries were 97.9% (RSD: 4.4%, n = 6) and 102.8% (RSD: 1.1%, n = 6) for progesterone spiked at 5 and 50 ng mL−1, respectively. This simple, accurate, sensitive, and selective analytical method is applicable to the trace analysis of a minute amount of sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号