首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and highly selective high-performance liquid chromatography (HPLC) method was developed for the determination of vitamin K homologues including phylloquinone (PK), menaquinone-4 (MK-4) and menaquinone-7 (MK-7) in human plasma using post-column peroxyoxalate chemiluminescence (PO-CL) detection following on-line ultraviolet (UV) irradiation. The method was based on ultraviolet irradiation (254 nm, 15 W) of vitamin K to produce hydrogen peroxide and a fluorescent product at the same time, which can be determined with PO-CL detection. The separation of vitamin K by HPLC was accomplished isocratically on an ODS column within 35 min. The method involves the use of 2-methyl-3-pentadecyl-1,4-naphthoquinone as an internal standard. The detection limits (signal-to-noise ratio = 3) were 32, 38 and 85 fmol for PK, MK-4 and MK-7, respectively. The recoveries of PK, MK-4 and MK-7 were greater than 82% and the inter- and intra-assay R.S.D. values were 1.9-5.4%. The sensitivity and selectivity of this method were sufficient for clinical and nutritional applications.  相似文献   

2.
Artemisinin is an antimalarial drug containing an internal endoperoxide linkage in its structure. A simple, selective and sensitive high-performance liquid chromatography (HPLC)-peroxyoxalate chemiluminescence (PO-CL) method for the determination of artemisinin was developed. This method is based on the fact that endoperoxide in artemisinin structure can be converted to hydrogen peroxide (H(2)O(2)) under ultraviolet (UV) irradiation and the generated hydrogen peroxide can be measured using PO-CL detection. The HPLC-PO-CL system was optimized on a mobile phase, post column chemiluminescence reagent, UV source and irradiation time. In addition, the system was combined with simple liquid-liquid extraction using n-hexane that allowed selective and sensitive determination of artemisinin in serum. The limit of detection using 0.5 mL of blood was 0.062 micromol/L (17.5 ng/mL) at a signal-to-noise ratio of 3. Calibration curve obtained for artemisinin in human serum 4-80 micromol/L (1.1-22.6 microg/mL) showed a good linearity (r = 0.999).  相似文献   

3.
A sensitive determination method for a non-fluorescent anti-arrhythmic drug, mexiletine, in rat plasma is presented utilizing a HPLC peroxyoxalate chemiluminescence (PO-CL) detection system. After an internal standard (4-methylmexiletine, 4.35 pmol) and 0.1 N sodium hydroxide solution were added to 5 microL rat plasma, the solution was poured onto an Extrelut 1 column. Both mexiletine and the internal standard were eluted with diethy ether and then the eluate was evaporated to dryness. The residue was dissolved in 0.2 M borate buffer (pH 8.5) and mixed with dansyl chloride (75 nmol) in acetronitrile. After standing of 90 min at room temperature, 0.5 N HCl was added to the reaction mixture to stop the reaction and a 2/45 aliquot of the mixture was subjected to a HPLC PO-CL detection system using bis(4-nitro-2(3,6,9-trioxadecyloxycarbonyl)phenyl) oxalate (TDPO) and hydrogen peroxide. The calibration curve for mexiletine in rat plasma was linear over the range 20-100 ng/mL plasma (20.6-103 fmol/injection). The detection limit (S/N = 2) was 1.0 fmol over the whole procedure. The method was applied to the measurement of the time courses of plasma mexiletine concentration after oral administration of the drug [25 mg (115.9 mumol)/kg] to rats.  相似文献   

4.
The development of a highly sensitive method for the determination of nanomolar concentrations of hydrogen peroxide in the liquid phase is described. This paper demonstrates for the first time a flow injection analysis (FIA) system with immobilized enzyme reactor combined with a total internal reflective cell (a liquid waveguide capillary cell (LWCC)) and spectrophotometric detection, for the development of an improved procedure for the determination of hydrogen peroxide. Moreover, the newly synthesized 4-aminopyrazolone derivative, 4-amino-5-(p-aminophenyl)-1-methyl-2-phenyl-pyrazol-3-one (DAP), is used as a color coupler in its oxidative condensation with the sodium salt of N-ethyl-N-sulphopropylaniline sodium salt (ALPS) which acts as a hydrogen donor. Immobilization of peroxidase is achieved by coupling the periodate-treated enzyme to aminopropyl controlled-pore glass (CPG) beads. The determination of hydrogen peroxide is carried out in a 0.1 M phosphate buffer and the product is monitored at 590 nm with a charge-coupled device (CCD) detector equipped with fiber optics in a fully computerized system. The interference of different species, mainly ionic, was investigated.The method permits detection down to 4 nmol l−1 hydrogen peroxide (signal-to-noise ratio=3). A linear calibration graph was obtained over the range 20-700 nmol l−1. The relative standard deviation (R.S.D.) at 300 nmol l−1 H2O2 is 1.7% (n=7). The method was successfully applied for the determination of hydrogen peroxide in samples from a vat-cleaning process.  相似文献   

5.
Chenodiol and ursodiol are diastereomeric bile acids and widely used as anticholelithogenic. A sensitive method was established for the simultaneous determination of chenodiol and ursodiol by fluorigenic derivatization and liquid chromatography. The analytes were derivatized with 2-(2-naphthoxy)ethyl 2-(piperidino)ethanesulfonate (NOEPES) catalyzed by 18-crown-6 ether (18-crown-6) and potassium hydrogen carbonate. The resulting derivatives were analyzed by isocratic HPLC with fluorimetric detection (excitation at 235 nm and emission at 350 nm). The linear range for the analysis of the drugs was 1.0-30.0 μM with the detection limits (S/N=3) of 0.4 and 0.2 μM, respectively, for chenodiol and ursodiol each based on an injection volume of 10 μl sample. The method was demonstrated to the analysis of chenodiol in capsules and ursodiol in tablets. The results indicate that the method is sensitive and selective.  相似文献   

6.
Ning Sun  Guocai Lu  Mei Lin  Yutian Wu 《Talanta》2009,78(2):506-1470
MCC-555 is a novel thiazolidinedione which reduces plasma glucose concentrations in Type 2 diabetes mellitus models due to enhancement of insulin sensitivity. A highly sensitive and selective quantitative method to accurately determine MCC-555 in rat plasma is crucial to the success of pharmacokinetic studies of MCC-555. To this purpose we have developed and validated a high-throughput method in a 96-well plate format using ultra-fast liquid chromatography (Shimadzu Prominence UFLC™ system) for the determination of MCC-555 in rat plasma. MCC-555 along with the internal standard resveratrol was extracted from 50 μl of rat plasma by liquid-liquid extraction using ethyl acetate. Baseline separation of MCC-555 and resveratrol was achieved using UFLC technology on a C18 stationary-phase column with 2.2 μm particle size. The influences of flow rate, column temperature and mobile phase pH on chromatographic performance were investigated. Comparing to the conventional HPLC method, UFLC showed many advantages including reduced run time, less solvent consumption and increased sensitivity. The UFLC method was sensitive with a lower limit of quantification of 0.002 μg/ml, with good linearity (r > 0.999) over the linear range of 0.002-2.0 μg/ml. The intra- and inter-run precision was less than 8.6% and accuracy ranged from −6.4 to 8.2% for quality control samples. The extraction recovery from plasma was no less than 80%. The validation and sample analysis results show that the method is precise, accurate and well suited to support pharmacokinetic studies in rats involving three dose administrations.  相似文献   

7.
Wei Li 《Talanta》2007,71(1):385-390
A novel high-performance liquid chromatographic (HPLC) method using pre-column derivatization and UV detection at 275 nm for the determination of clarithromycin in rat plasma has been validated. Clarithromycin was extracted from plasma sample spiked with internal standard (erythromycin) under alkaline condition with ethyl ether and derivatizated with trimethylbromosilane. The analyses were run on a C18 column, maintained at 40 °C during elution, using a mobile phase comprised of potassium dihydrogen phosphate (50 mM, pH 6.8, contained 0.7% triethylamine), acetonitrile, and methanol (30:45:25, v/v/v). The standard calibration curve for clarithromycin was linear (r2 = 0.9998) over the concentration range of 0.1-10 μg ml−1 in rat plasma. The limit of detection (LOD) and limit of quantitation (LOQ) was 30 ng ml−1 and 0.1 μg ml−1 respectively. The intra- and inter-day assay variability range was 2.6-7.4% and 3.3-8.5%, respectively. This method has been successfully applied to a pharmacokinetic study of clarithromycin in rats.  相似文献   

8.
Amini N  McKelvie I 《Talanta》2005,66(2):445-452
A sensitive and selective flow injection method for the determination of phosphatidylcholine (PC) in sediment pore waters and extracts is described. It involves the use of phospholipase C, alkaline phosphatase and choline oxidase co-immobilized on controlled pore glass in a packed column reactor. The final product of the enzymatic reaction of phosphatidylcholine is hydrogen peroxide, and this is detected by measuring the chemiluminescence emission resulting from cobalt(II) catalysed reaction with luminol. The flow injection method is rapid (30 injections/h), reproducible (1.4% R.S.D. at 3 μM PC, n = 10) with a detection limit of 0.14 μM (estimated from 3σn−1 of the measured blank). A linear calibration response was obtained over a concentration range of 0.5-9 μM (r = 0.999). The method has been applied to the determination of phosphatidylcholine in sediment extracts and sediment pore waters.  相似文献   

9.
A simple, sensitive and accurate reverse phase high-performance liquid chromatographic (RP-HPLC) method with photo-diode array detector (PDA) was developed and validated for the determination of amphotericin B (AMB) in the rat plasma using a new internal standard (IS) α-naphthol. The plasma samples were subjected to protein precipitation with methanol prior to a HPLC analysis. Chromatographic separations were achieved on a Nucleosil® 100-5C18 (150 mm × 4.6 mm) column. The mobile phase consisted of acetonitrile and sodium acetate buffer (pH 4; 10 mM) in a gradient mode. Detection was carried out at a wavelength of 407 and 294 nm for AMB and IS, respectively. The retention times of AMB and IS were about 6.8 and 7.8 min, respectively. The calibration curve was linear in the range of 10-2000 ng mL−1 for AMB (r2 > 0.998). No significant matrix effect was observed on quantification of AMB or IS. At three quality control concentrations of 20, 500, and 2000 ng mL−1, the intra-day and inter-day relative standard deviation ranged from 1.13% to 4.91%. The limit of detection (LOD) was 5 ng mL−1 and the limit of quantification (LOQ) was 10 ng mL−1 for AMB in rat plasma. This method is simple, sensitive, rapid and does not require any extensive sample purification before injecting into HPLC.  相似文献   

10.
A column-switching high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of loganin and sweroside, which are the active ingredients of purified herbal extract from Lonicera japonica (SKL JI), in rat plasma using column-switching and ultraviolet (UV) absorbance detection. Plasma was simply filtrated prior to injection to the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with two six-port switching valves. Detection of loganin and sweroside was accurate and repeatable, with a limit of quantitation of 0.05 μg ml−1 in plasma. The calibration curves for both loganin and sweroside were linear over the concentration ranges of 0.05-40.0 and 0.02-40.0 μg ml−1 in rat plasma, respectively. The intra- and inter-day precision over the concentration range for loganin and sweroside were lower than 8.1 and 10.9% (relative standard deviation, R.S.D.), and accuracy was between 94.7 and 113.5 and 95.0 and 113.1%, respectively. This method has been successfully applied to determine the levels of loganin and sweroside in rat plasma samples from pharmacokinetics studies.  相似文献   

11.
A simple, sensitive and selective method for the determination of bromide in seawater by using a flow injection/stopped-flow detection technique was examined. The detection system was developed for a new kinetic-spectrophotometric determination of bromide in the presence of chloride matrix without any extraction and/or separation. The detection was based on the kinetic effect of bromide on the oxidation of methylene blue (MB) with hydrogen peroxide in a strongly acidic solution. Large amounts of chloride could enhance the sensitivity of the method as an activator. The decolorisation of the blue color of MB was used for the spectrophotometric determination of bromide at 746 nm. A stopped-flow approach was used to improve the sensitivity of the measurement and provide good linearity of the calibration over the range of 0-3.2 μg ml−1 of bromide. The relative standard deviation was 0.74% for the determination of 2.4 μg ml−1 bromide (n = 5). The detection limit (3σ) was 0.1 μg ml−1 with a sampling frequency of 12 h−1. The influence of potential interfering ions was studied. The proposed method was applied to the determination of bromide in seawater samples and provided satisfactory results.  相似文献   

12.
A sensitive, selective and reliable method has been developed and validated for the determination of halofantrine and its metabolite desbutylhalofantrine in rat plasma using 9,10-diphenylanthracene as an internal standard. The method is based on peroxyoxalate chemiluminescence detection of hydrogen peroxide produced from fused aromatic rings in the structures of halofantrine and desbutylhalofantrine upon UV irradiation. Using spiked rat plasma, good linear relationships were obtained for both halofantrine and desbutylhalofantrine between peak height ratios (vs internal standard) and their corresponding concentrations over a range of 0.01-0.8 microg/mL with correlation coefficients of at least 0.997. The detection limits at signal-to-noise ratio of 3 using 0.2 mL of rat plasma were 1.5 and 1.4 ng/mL for halofantrine and desbutylhalofantrine, respectively. Relative standard deviations (n = 3) intra- and inter-day were between 0.5 and 5.4% for all the studied concentrations. Using this method with simple sample treatment, halofantrine and desbutylhalofantrine in rat plasma could be precisely determined without interference from endogenous substances. The method was successfully applied to the measurement of the time courses of plasma halofantrine concentration after oral administration of the drug (7 mg/kg) to rats.  相似文献   

13.
Rao RN  Maurya PK  Khalid S 《Talanta》2011,85(2):950-957
A novel water-compatible molecularly imprinted solid-phase extraction (MISPE) combined with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) method for selective extraction and determination of sitagliptin in rat serum and urine was developed and validated. The effects of progenic solvents, pH, cross linker and amount of monomer were studied to optimize the efficiency and selectivity. The adsorption kinetics and isotherms were measured. The molecularly imprinted polymer (MIP) showed good specific adsorption capacity with an optimum of 180 mg/g at pH 7.5 and selective extraction of sitagliptin from rat plasma and urine. The recovery of sitagliptin from rat urine and plasma was >98%. The limits of detection (LOD) and quantification (LOQ) were 0.03 and 0.10 μg/L respectively. The proposed method overcomes the matrix effects of phospholipids generally encountered while preparation of plasma samples by precipitation of proteins.  相似文献   

14.
A highly sensitive fluorescence quenching method has been developed for selective determination of hydrogen peroxide based on the catalytic effect of hemin on theo-hydroxyphenylfluorone (a new fluorogenic substrate) and hydrogen peroxide system. Under optimum conditions, the calibration graph was linear over the range 0–1.0 × 10−6mol/liter hydrogen peroxide, with a limit of detection of 8.0 × 10−9mol/liter in a 10-min reaction period. It can easily be incorporated into the determination of biochemical substances that produce hydrogen peroxide under catalytic oxidation by their oxidase. This possibility has been tested for the determination of glucose in human sera as an example.  相似文献   

15.
A simple and convenient flow injection-chemiluminescence (FI-CL) method for the determination of cysteine is reported, based on a fast and strong CL in a basic luminol-cysteine-NaIO4 solution. The linear range was 1.0×10−8 to 1.0×10−6 M with a detection limit (3s) of 5×10−9 M, which was 100 times more sensitive than previously reported CL methods. Singlet oxygen, hydroxyl radical and hydrogen peroxide were suggested to be produced in this reaction and were responsible for the CL of cysteine. This simple method has been successfully applied for the determination of cysteine in a pharmaceutical formulation.  相似文献   

16.
A simple and highly sensitive kinetic fluorimetric method is proposed for the determination of trace tannins, based on the activation of tannins on the oxidation of rhodamine 6G (Rh 6G) by hydrogen peroxide catalyzed by Cu(II) ion. The calibration graph was rectilinear in the range 0.08-1.28 mg l1 for tannin, the 3σ detection limit for tannin is 0.0455 mg l1. The relative standard deviation for 11 determinations of 0.4 mg l1 tannin is 0.96%. The proposed method has been successfully used to determine tannins in tea and Chinese gall. The results obtained were compared with those provided by the Folin-Ciocalteu method. This is the first procedure to be reported for the determination of tannins based on fluorimetric measurements.  相似文献   

17.
Katsumata H  Fujii A  Kaneco S  Suzuki T  Ohta K 《Talanta》2005,65(1):129-134
A sensitive and selective batch adsorption method is proposed for the preconcentration and determination of simazine. Simazine was preconcentrated on diatomaceous earth as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recovery of the analyte were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 2 using 100 mL of validation solution containing 1.5 μg of simazine and 5 mL of ethanol as an eluent. Recovery of simazine was 89.0 ± 1.6% with a relative standard deviation for seven determinations of 1.5% under optimum conditions. The maximum preconcentration factor was 100 for simazine when 500 mL of sample solution volume was used. The linear range of calibration curve was 1-200 ng mL−1 with a correlation coefficient of 0.996 and the detection limit (3S/N) was 0.3 ng mL−1. The capacity of the adsorbent was also examined and found to be 1.1 mg g−1 for simazine. The proposed method was successfully applied to the determination of simazine in river water with high precision and accuracy.  相似文献   

18.
A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 μg mL−1 Cu(II) and the limit of detection is only 6 μg L−1 Cu(II). Besides, the Cu-ACDB complex formed was characterized.  相似文献   

19.
Zhao Y  Zhao S  Huang J  Ye F 《Talanta》2011,85(5):2650-2654
A sensitive method based on quantum dot (QD)-enhanced capillary electrophoresis-chemiluminescence (CE-CL) detection was developed for simultaneous determination of dopamine (DA) and epinephrine (E). In this work, CdTe QD was added into the running buffer of CE to catalyze the post-column CL reaction between luminol and hydrogen peroxide, achieving higher CL emission. Negative peaks were produced due to the inhibitory effects on CL emission from DA and E eluted from the electrophoretic capillary. The decrease in CL intensity was proportional to the concentration of DA and E in the range of 8.0 × 10−8-5.0 × 10−6 M and 4.0 × 10−8-5.0 × 10−6 M, respectively. Detection limits for DA and E were 2.3 × 10−8 M and 9.3 × 10−9 M, respectively. Using this method, the levels of DA and E in human urine from healthy donors were determined.  相似文献   

20.
Wang S  Ma H  Li J  Chen X  Bao Z  Sun S 《Talanta》2006,70(3):518-521
A simple, sensitive and selective chemiluminescence (CL) method is proposed for the determination of reduced glutathione (GSH) in biological fluids. This method is based on the fact that the weak CL of GSH oxidized with cerium(IV) can be greatly enhanced by quinine. The optimum conditions for the CL emission were investigated. The calibration curve for GSH was linear over the concentration range of 4.0 × 10−9-4.0 × 10−5 M with a detection limit of 5 × 10−10 M (S/N = 3). The R.S.D. was found to be 4.0% by 11 replicate determinations of 1.0 × 10−7 M GSH. It was also found that GSH and cysteine, the two often-coexisting thiol compounds in biological samples, exhibited a different CL sensitivity in the Ce(IV)-quinine system (the sensitivity of GSH was higher than that of cysteine). This leads to the successful use of the proposed method for the direct and selective determination of GSH in rabbit whole blood and rat brain microdialysate in the presence of cysteine. Moreover, compared to the classical 5,5′-dithiobis(2-nitrobenzoic acid) method, the present one has the advantages of simplicity and high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号