首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The determination of tetracycline by fluorescence spectrophotometry in complex matrices has some difficulties, because the presence of other compounds in the matrix affects the analytical signal. In this work, the effect of some inorganic species that are present in whey milk on the fluorescence signal of tetracycline is studied using a D-optimal experimental design. Next, an experimental strategy is proposed in conjunction with Parallel Factor Analysis, PARAFAC, modeling that leads to suitably modeling the severe matrix effect in the determination of tetracycline in whey milk. A specific design is performed in such a way that the lack of trilinearity due to the effect of the presence of interferents on the signal is obviated. Then, ten test samples from three brands of milk, spiked with different quantities of tetracycline and measured in 2 days were analysed using this methodology (mean of the absolute value of the relative errors: 5.1%). The developed analytical method fulfils the property of trueness, the relative errors being, both in calibration and prediction, inside the interval set by Commission Decision 2002/657/EC at these concentration levels. Decision limits (CCα) at x0 = 0 μg L−1 and at x0 = 100 μg L−1 were 13.2 and 112.4 μg L−1 respectively, for α = 0.05; whereas detection capabilities (CCβ) were 25.9 μg L−1 and 124.4 μg L−1 respectively for α = β = 0.05.  相似文献   

2.
《Analytica chimica acta》2004,501(2):193-203
According to the committee decision of 12 August 2002 (2002/657/EC) the capability of detection, CCβ, must be set in all analytical methods not only at concentration levels close to zero but also at the maximum permitted limit (PL). In this work we describe a methodology which evaluates the capability of detection of a fluorescence technique with soft calibration models (bilinear and trilinear PLS) to determine tetracyclines (group B1 substances from annex 1 of Directive 96/23/EC). Its estimation is based on the generalisation of the procedure described in International Union of Pure and Applied Chemistry and in the ISO standard 11843 for univariate signals which evaluates the probabilities of false positive (α) and false negative (β). The capability of detection, CCβ, estimated from the second-order signal and the trilinear PLS model is 9.93 μg l−1 of tetracycline, 17.75 μg l−1 of oxytetracycline and 26.31 μg l−1 of chlortetracycline, setting α and β at 0.05. The capability of detection, CCβ, determined around the PL (100 μg kg−1 in milk and muscle) with the second-order signal is 109.4 μg l−1 of tetracycline, 117.0 μg l−1 of oxytetracycline and 124.9 μg l−1 of chlortetracycline, setting α and β at 0.05. The results were compared with those obtained with zero and first-order signals. The effect of the interferences on the capability of detection was also analysed as well as the number of standards used to build the models and their calibration range.When a tetracycline is quantified in presence of uncalibrated ones by means of the trilinear PLS model the errors oscillate between 14.70% for TC and 9.57% for OTC.  相似文献   

3.
This paper reports a multiresponse optimization of an extraction procedure in the simultaneous determination of malachite green (MG) and its metabolite (leucomalachite green, LMG) in fish by liquid chromatography with triple quadrupole mass spectrometry (LC–MS/MS). Prior to optimization, the active factors of the extraction procedure were determined by a screening experimental design. Then, in the optimal experimental conditions of the extraction, MG and LMG have been determined by using a three-way calibration model based on parallel factor analysis (PARAFAC). The procedure fulfils the performance requirements for a confirmatory method established by the European Union Decision 2002/657/EC. This norm establishes maximum permitted tolerances for relative abundance of the precursor/product ion pairs. There is a reported contradiction in the literature related to the fact that there are standard samples whose concentration is greater than CCα but the maximum permitted tolerances are not fulfilled in the identification of the analytes. In this work, it is shown that with the information provided by PARAFAC this contradiction is avoided. The figures of merit for PARAFAC and univariate calibration procedures were evaluated under optimal conditions in the extraction step. The figures of merit obtained were in the range of 0.13–0.23 μg kg−1 for the decision limit, CCα, (α = 0.01) and 0.22–0.39 μg kg−1 for the detection capability, CCβ, (β = 0.05), whereas mean relative errors in absolute value were in the range of 2.8–4.6% for MG and LMG with PARAFAC calibration. The proposed optimized extraction procedure using a PARAFAC calibration was also applied in the determination of MG and LMG in gilthead bream samples: the decision limit was in the range of 0.45–0.55 μg kg−1, the detection capability was in the range of 0.76–0.92 μg kg−1 for MG and LMG. Trueness was likewise confirmed and the mean of the absolute values of relative errors were between 4.2% and 7.2%.  相似文献   

4.
A high performance liquid chromatographic method with fluorimetric detection for the determination of aflatoxin M1 (AFM1) in milk has been optimized and validated according to Commission Decision 2002/657/EC by using the conventional validation approach. The procedure for determining selectivity, recovery, precision, decision limit (CCα), detection capability (CCβ) and ruggedness of the method has been reported. The results of the validation process demonstrate the agreement of the method with the provisions of Commission Regulation 401/2006/EC. The mean recovery calculated at three levels of fortification (0.5, 1.0, and 1.5-fold the MRL) was 91% and the maximum relative standard deviation value for the within-laboratory reproducibility was 15%. Limit of detection (LOD) and limit of quantitation (LOQ) values were 0.006 μg kg−1 and 0.015 μg kg−1 while the CCα and CCβ values were 0.058 μg kg−1 and 0.065 μg kg−1, respectively. The relative expanded measurement uncertainty of the method was 7%. The method was not affected by slight variations of some critical factors (ruggedness minor changes) as pre-treatment and clean-up of milk samples, thermal treatment and different storage conditions, as well as by major changes valued in terms of milk produced by different species (buffalo, goat and sheep). The method allowed accurate confirmation analyses of milk samples, resulted positive by the screening method. In fact, the Z-score values attained in a proficiency test round were well below the reference value of 1, proving the excellent laboratory performances.  相似文献   

5.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   

6.
A relatively fast, simple and very selective liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the detection of flunixin, its 5-hydroxymetabolite and ketoprofen in raw milk has been developed and validated. After a simple extraction with acetonitrile and partial evaporation of the organic phase, the extract was filtered and directly injected into the LC-MS-MS system on a Symmetry C18 column. The parent ions were selected for further fragmentation with argon. The method developed was partially validated according to Commission Decision 2002/657/EC [Commission Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results]. The validation parameters were linearity, specificity, repeatability, recovery and decision limit (CCα). CCα varied from 0.5 μg kg−1 for flunixin and 5-hydroxyflunixin to 1 μg kg−1 for ketoprofen.Holstein-Friesian cows were given either Ketofen® or Finadyne® via an intravenous injection at the maximum dose as written in the instructions. Cows were milked twice a day and all samples were analysed by the method described. The highest concentrations found for ketoprofen, flunixin and 5-hydroxyflunixin were 2.5, 6.7 and 590 μg l−1, respectively. The concentration of 5-hydroxyflunixin declined rapidly to concentrations below the MRL value of 40 μg l−1. It can be concluded that the withdrawal time proposed by the pharmaceutical companies, 12 h after the last dosing, is acceptable for both compounds.  相似文献   

7.
B.D. Real  L.A. Sarabia 《Talanta》2007,71(4):1599-1609
Using a central composite design, the signal of the process for the spectrophotometric determination of hexavalent chromium (λ = 543 nm) is maximised and its variability minimised using as complexing agent 1,5-diphenylcarbazide in sufficiently acid medium. To analyse the interference of various analytes (Mo(VI), V(V), Fe(III) and Mn(VII)) on the Cr(VI) as a function of concentration of interferent, a factorial design was prepared at three levels of each (zero, medium and high concentration), which implies performing 81 determinations. However, a D-optimal design with just nine experiments is sufficiently good to estimate the model proposed.The interference of these metals makes it impossible to determine Cr(VI) when they are present in the sample. To avoid prior separation steps, a multivariate regression by partial least squares, PLS, is proposed to calibrate the Cr(VI) in the presence of these analytes varying the concentration of the Cr(VI) between 0.1 and 0.9 μg ml−1 and that of the interferents between 3 and 5 μg ml−1. The average errors obtained were 4.5% and 3.29% fitted and in prediction, respectively, with a standard error in prediction (RMSEP) of 0.016% presenting absence of both constant and proportional bias.The detection limit with the PLS regression in the presence of interferents is 0.1 μg ml−1 with a probability of false positive equal to 5% and less than 5% for false negative. The capability of detection is similar to that obtained with the univariate calibration (absorbance at 543 nm) in absence of interferents.With the PLS regression it is possible to discriminate 0.085 μg ml−1 of Cr(VI) in a sample with 0.5 μg ml−1 of Cr(VI) with probabilities of false compliance and false non-compliance equal to 0.05. For the univariate calibration without interferents, it was established at 0.0971 μg ml−1 of Cr(VI) for the same nominal concentration.In relation to interference of V(V), Fe(III) and Mn(VII), the PLS calibration could be an efficient alternative to the separation step for Cr(VI) spectrophotometric determination using 1,5-diphenylcarbazide.  相似文献   

8.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

9.
A gas chromatography–mass spectrometric (GC–MS) method has been established for the determination of hydrazine in drinking water and surface water. This method is based on the derivatization of hydrazine with ortho-phthalaldehyde (OPA) in water. The following optimum reaction conditions were established: reagent dosage, 40 mg mL−1 of OPA; pH 2; reaction for 20 min at 70 °C. The organic derivative was extracted with methylene chloride and then measured by GC–MS. Under the established condition, the detection and the quantification limits were 0.002 μg L−1 and 0.007 μg L−1 by using 5.0-mL of surface water or drinking water, respectively. The calibration curve showed good linearity with r2 = 0.9991 (for working range of 0.05–100 μg L−1) and the accuracy was in a range of 95–106%, and the precision of the assay was less than 13% in water. Hydrazine was detected in a concentration range of 0.05–0.14 μg L−1 in 2 samples of 10 raw drinking water samples and in a concentration range of 0.09–0.55 μg L−1 in 4 samples of 10 treated drinking water samples.  相似文献   

10.
Acrolein (propenal) is found in many foods and beverages and may pose a health hazard due to its cytotoxicity. Considerable knowledge gaps regarding human exposure to acrolein exist, and there is a lack of reliable analytical methods. Hydroalcoholic dilutions prepared for calibration purposes from pure acrolein show considerable degradation of the compound and nuclear magnetic resonance (NMR) spectroscopy showed that 1,3,3-propanetriol and 3-hydroxypropionaldehyde are formed. The degradation can be prevented by addition of hydroquinone as stabilizer to the calibration solutions, which then show linear concentration-response behaviour required for quantitative analysis. The stabilized calibration solutions were used for quantitative headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) determination of acrolein in alcoholic beverages with a detection limit of 14 μg L−1. Of 117 tested alcoholic beverages, 64 were tested positive with the highest incidence in grape marc spirits and whiskey (100%, mean 252 μg L−1), followed by fruit spirits (86%, mean 591 μg/L−1), tequila (86%, mean 404 μg L−1), Asian spirits (43%, mean 54 μg L−1) and wine (9%, mean 0.7 μg L−1). Acrolein could not be detected in beer, vodka, absinthe and bottled water. Six of the fruit and grape marc spirits had acrolein levels above the World Health Organization (WHO) provisional tolerable concentration of 1.5 mg L−1.  相似文献   

11.
In this article, we report a new method that involves headspace single-drop microextraction and ion chromatography for the preconcentration and determination of fluoride. The method lies in the in situ hydrogen fluoride generation and subsequent sequestration into an alkaline microdrop (15 μL) exposed to the headspace above the stirred aqueous sample. The NaF formed in the drop was then determined by ion chromatography. The influences of some crucial single-drop microextraction parameters such as the extraction temperature, extraction time, sample stirring speed, sulphuric acid concentration and ionic strength of the sample, on extraction efficiency were investigated. In the optimal condition, an enrichment factor of 97 was achieved in 15 min. The calibration working range was from 10 μg L−1 to 2000 μg L−1 (R2 = 0.998), and the limit of detection (signal to noise ratio of 3) was 3.8 μg L−1 of fluoride. Finally, the proposed method was successfully applied to the determination of fluoride in different milk samples. The recoveries of fluoride (at spiked concentrations of 200 μg L−1 and 600 μg L−1 into milk) in real samples ranged from 96.9% to 107.7%. Intra-day precision (N = 3) in terms of peak area, expressed as relative standard deviation, was found to be within the range of 0.24-1.02%.  相似文献   

12.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

13.
This paper describes a method for the detection and quantification of 38 residues of the most widely used anthelmintics (including 26 veterinary drugs belonging to the benzimidazole, macrocyclic lactone and flukicide classes) in bovine liver using two different protocols for MRL and non-MRL levels. A dual validation approach was adopted to reliably quantify anthelmintic residues over an extended concentration range (1-3000 μg kg−1). Sample extraction and purification was carried out using a modified QuEChERS method. A concentration step was included when analysing in the low μg kg−1 range. Rapid analysis was carried out by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which was capable of detecting residues to <2 μg kg−1. The method has been single-laboratory validated according to the 2002/657/EC guidelines and met acceptability criteria in all but a few cases. The inclusion of 19 internal standards, including 14 isotopically labelled internal standards, improved accuracy, precision, decision limit (CCα) and detection capability (CCβ).  相似文献   

14.
A high-performance liquid chromatography-fluorescence detection method was optimized and validated to determine tetracyclines residues in bovine milk. Post-column derivatization using metal complexation in non-aqueous reagent increased the fluorescence of chelates by a factor up to 2.54 compared to water (signal-to-noise ratio enhancement). Overall recoveries ranged from 61 to 115%, with RSDr from 5 to 15% (n = 54). Detection limits ranged from 5 to 35 μg kg−1. Limits of quantification were established at 50 μg kg−1. Decision limits (CCα) were 109, 108 and 124 μg kg−1 and detection capabilities (CCβ) 119, 117 and 161 μg kg−1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The method was applied successfully in a national monitoring program.  相似文献   

15.
Liang Y  Liu XJ  Liu Y  Yu XY  Fan MT 《Analytica chimica acta》2008,615(2):174-183
A general and broad class-specific enzyme-linked immunosorbent assay was developed for the O,O-dimethyl organophosphorus pesticides, including malathion, dimethoate, phenthoate, phosmet, methidathion, fenitrothion, methyl parathion and fenthion. Three haptens with different spacer-arms were synthesized. The haptens were conjugated to bovine serum albumin (BSA) for immunogens and to ovalbumin (OVA) for coating antigens. Rabbits were immunized with the immunogens and six polyclonal antisera were produced and screened against each of the coating antigens using competitive indirect enzyme-linked immunosorbent assay for selecting the proper antiserum. The effect of hapten heterology on immunoassay sensitivity was also studied. The antibody-antigen combination with the most selectivity for malathion was further optimized and tested for tolerance to co-solvent, pH and ionic strength changes. The IC50 values, under optimum conditions, were estimated to be 30.1 μg L−1for malathion, 28.9 μg L−1 for dimethoate, 88.3 μg L−1 for phenthoate, 159.7 μg L−1 for phosmet, 191.7 μg L−1 for methidathion, 324.0 μg L−1 for fenitrothion, 483.9 μg L−1 for methyl parathion, and 788.9 μg L−1 for fenthion. Recoveries of malathion, dimethoate, phenthoate, phosmet and methidathion from fortified Chinese cabbage samples ranged between 77.1% and 104.7%. This assay can be used in monitoring studies for the multi-residue determination of O,O-dimethyl organophosphorus pesticides.  相似文献   

16.
17.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

18.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

19.
Li2O-ZrO2-BaO-SiO2 glass fibers were produced and their surfaces were coated with zinc oxide. The fibers’ surface morphology was examined by scanning electron microscopy and the zinc oxide layer was characterized by mapping the Kα and Lα lines of zinc by energy dispersive X-ray spectroscopy. The results indicated that a homogeneous and porous layer of ZnO was formed on the fibers’ surface. This layer was subjected to a simultaneous determination of trihalomethanes using headspace-solid phase microextraction-gas chromatography. The study was conducted after evaluating the ideal time of incubation (15 min), extraction (15 min) and desorption (10 min), as well as the effect of the addition of salt (15%, m/v) on the analytical response. A good linear dynamic range was observed individually for trihalomethanes aqueous solutions containing 20 μg L−1 and 500 μg L−1 of trichloromethane, 15 μg L−1 and 250 μg L−1 of dichlorobromomethane and dibromochloromethane and 10 μg L−1 and 100 μg L−1 of tribromomethane, with all the compounds showing correlation coefficients higher than 0.9900.  相似文献   

20.
Screening methods are used to detect the presence of a substance or class of substances at the level of interest and are specifically designed to avoid false compliant results. They should allow the running of a high number of samples per day at a low cost under routine conditions. In this work, a rapid and simple method for the screening of six sulfonamides (sulfadiazine, SD; sulfamerazine, SMR; sulfamethazine, SMT; sulfachloropyridazine, SCP; sulfathiazole, STZ and sulfamethoxazole, SMO) in milk samples is proposed and assessed according to the criteria required by the European Regulation, Decision 2002/657/EC. The method is based on modelling front-face fluorescence emission spectra by means of partial least squares class modelling (PLS-CM). The milk samples are pre-treated with a single easy step of derivatization with fluorescamine.After confirming that the method has equal analytical sensitivity for all the six sulfonamides, it is established that the multivariate analytical sensitivity at 100 μg L−1 is 37.5 μg L−1 when analysing a mixture of six sulfonamides added to different brands of milk and measured in different days. In addition, the method is applied to samples from 11 commercial brands of milk. For β = 0.05, threshold value established by the Decision 2002/657/EC for this method, the probability of false non-compliance, α, is equal to 0.17, allowing the suitable screening of these six sulfonamides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号