首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.  相似文献   

2.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. Another open question concerning clique-perfect graphs is the complexity of the recognition problem. Recently we were able to characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. These characterizations lead to polynomial time recognition of clique-perfect graphs in these classes of graphs. In this paper we solve the characterization problem in two new classes of graphs: diamond-free and Helly circular-arc () graphs. This last characterization leads to a polynomial time recognition algorithm for clique-perfect graphs.  相似文献   

3.
A graph is balanced if its clique-matrix contains no edge–vertex incidence matrix of an odd chordless cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs is known, there is no such characterization by minimal forbidden induced subgraphs. In this work, we provide minimal forbidden induced subgraph characterizations of balanced graphs restricted to graphs that belong to one of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time recognition algorithms for balanced graphs within the same three graph classes.  相似文献   

4.
5.
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs.  相似文献   

6.
For an integer s0, a graph G is s-hamiltonian if for any vertex subset S?V(G) with |S|s, G?S is hamiltonian, and G is s-hamiltonian connected if for any vertex subset S?V(G) with |S|s, G?S is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Ku?zel and Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected (see Ryjá?ek and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of s-hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for s2, a line graph L(G) is s-hamiltonian if and only if L(G) is (s+2)-connected. In this paper we prove the following.(i) For an integer s2, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s+2)-connected.(ii) The line graph L(G) of a claw-free graph G is 1-hamiltonian connected if and only if L(G) is 4-connected.  相似文献   

7.
A graph is called normal if its vertex set can be covered by cliques Q1,Q2,…,Qk and also by stable sets S1,S2,…,Sl, such that SiQj≠∅ for every i,j. This notion is due to Körner, who introduced the class of normal graphs as an extension of the class of perfect graphs. Normality has also relevance in information theory. Here we prove, that the line graphs of cubic graphs are normal.  相似文献   

8.
A circular‐arc graph is the intersection graph of a family of arcs on a circle. A characterization by forbidden induced subgraphs for this class of graphs is not known, and in this work we present a partial result in this direction. We characterize circular‐arc graphs by a list of minimal forbidden induced subgraphs when the graph belongs to any of the following classes: P4 ‐free graphs, paw‐free graphs, claw‐free chordal graphs and diamond‐free graphs. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 289–306, 2009  相似文献   

9.
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of cliqueperfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-free graphs.  相似文献   

10.
On the Zagreb indices of the line graphs of the subdivision graphs   总被引:1,自引:0,他引:1  
The aim of this paper is to investigate the Zagreb indices of the line graphs of the tadpole graphs, wheel graphs and ladder graphs using the subdivision concepts.  相似文献   

11.
12.
Let G be a graph and let D6(G)={vV(G)|dG(v)=6}. In this paper we prove that: (i) If G is a 6-connected claw-free graph and if |D6(G)|≤74 or G[D6(G)] contains at most 8 vertex disjoint K4’s, then G is Hamiltonian; (ii) If G is a 6-connected line graph and if |D6(G)|≤54 or G[D6(G)] contains at most 5 vertex disjoint K4’s, then G is Hamilton-connected.  相似文献   

13.
A graph G is collapsible if for every even subset XV(G), G has a subgraph Γ such that GE(Γ) is connected and the set of odd-degree vertices of Γ is X. A graph obtained by contracting all the non-trivial collapsible subgraphs of G is called the reduction of G. In this paper, we characterize graphs of diameter two in terms of collapsible subgraphs and investigate the relationship between the line graph of the reduction and the reduction of the line graph. Our results extend former results in [H.-J. Lai, Reduced graph of diameter two, J. Graph Theory 14 (1) (1990) 77-87], and in [P.A. Catlin, Iqblunnisa, T.N. Janakiraman, N. Srinivasan, Hamilton cycles and closed trails in iterated line graphs, J. Graph Theory 14 (1990) 347-364].  相似文献   

14.
Tutte introduced the theory of nowhere zero flows and showed that a plane graph G has a face k-coloring if and only if G has a nowhere zero A-flow, for any Abelian group A with |A|≥k. In 1992, Jaeger et al. [9] extended nowhere zero flows to group connectivity of graphs: given an orientation D of a graph G, if for any b:V(G)?A with ∑vV(G)b(v)=0, there always exists a map f:E(G)?A−{0}, such that at each vV(G), in A, then G is A-connected. Let Z3 denote the cyclic group of order 3. In [9], Jaeger et al. (1992) conjectured that every 5-edge-connected graph is Z3-connected. In this paper, we proved the following.
  • (i) 
    Every 5-edge-connected graph is Z3-connected if and only if every 5-edge-connected line graph is Z3-connected.
  • (ii) 
    Every 6-edge-connected triangular line graph is Z3-connected.
  • (iii) 
    Every 7-edge-connected triangular claw-free graph is Z3-connected.
In particular, every 6-edge-connected triangular line graph and every 7-edge-connected triangular claw-free graph have a nowhere zero 3-flow.  相似文献   

15.
In [E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003), 241-272] we gave a survey of answers to the question of which graphs are determined by the spectrum of some matrix associated to the graph. In particular, the usual adjacency matrix and the Laplacian matrix were addressed. Furthermore, we formulated some research questions on the topic. In the meantime, some of these questions have been (partially) answered. In the present paper we give a survey of these and other developments.  相似文献   

16.
A circle graph is the intersection graph of a family of chords on a circle. There is no known characterization of circle graphs by forbidden induced subgraphs that do not involve the notions of local equivalence or pivoting operations. We characterize circle graphs by a list of minimal forbidden induced subgraphs when the graph belongs to one of the following classes: linear domino graphs, P4-tidy graphs, and tree-cographs. We also completely characterize by minimal forbidden induced subgraphs the class of unit Helly circle graphs, which are those circle graphs having a model whose chords have all the same length, are pairwise different, and satisfy the Helly property.  相似文献   

17.
18.
19.
A 2-cover is a multiset of subsets of [n]?{1,2,…,n} such that each element of [n] lies in exactly two of the subsets. A 2-cover is called proper if all of the subsets are distinct, and is called restricted if any two of them intersect in at most one element.In this paper we find asymptotic enumerations for the number of line graphs on n labelled vertices and for 2-covers.We find that the number sn of 2-covers and the number tn of proper 2-covers both have asymptotic growth
  相似文献   

20.
It is shown that a line graph G has clique-width at most 8k+4 and NLC-width at most 4k+3, if G contains a vertex whose non-neighbours induce a subgraph of clique-width k or NLC-width k in G, respectively. This relation implies that co-gem-free line graphs have clique-width at most 14 and NLC-width at most 7.It is also shown that in a line graph the neighbours of a vertex induce a subgraph of clique-width at most 4 and NLC-width at most 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号