首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi-band focal plane array sensitive in near-infrared (near-IR) and mid-wavelength infrared (MWIR) is been developed by monolithically integrating a near-infrared (1–1.5 μm) p–i–n photodiode with a mid-infrared (3–5 μm) QWIP. This multiband detector involves both intersubband and interband transitions in III–V semiconductor layer structures. Each detector stack absorbs photons within the specified wavelength band, while allowing the transmission of photons in other spectral bands, thus efficiently permitting multiband detection. Monolithically grown material characterization data and individual detector test results ensure the high quality of material suitable for near-infrared/QWIP dual-band focal plane array.  相似文献   

2.
A 9 μm cutoff 640 × 512 pixel hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated with excellent imagery. A noise equivalent differential temperature (NEDT) of 10.6 mK is expected at a 65 K operating temperature with f/2 optics at a 300 K background. This focal plane array has shown background limited performance at a 72 K operating temperature with the same optics and background conditions. In this paper, we discuss the development of this very sensitive long-wavelength infrared camera based on a GaAs/AlGaAs QWIP focal plane array and its performance in quantum efficiency, NEDT, uniformity, and operability. In the second section of this paper, we discuss the first demonstration of a monolithic spatially separated four-band 640 × 512 pixel QWIP focal plane array and its performance. The four spectral bands cover 4–5.5, 8.5–10, 10–12, and 13.5–15 μm spectral regions with 640 × 128 pixels in each band. In the last section, we discuss the array performance of a 640 × 512 pixel broad-band (10–16 μm full-width at half-maximum) QWIP focal plane.  相似文献   

3.
Uncooled microbolometer detector: Recent developments at Ulis   总被引:1,自引:0,他引:1  
Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Therefore, to answer these markets, a 35 μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160 × 120 and 384 × 288 arrays production. Besides a wide-band version from uncooled 320 × 240/45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320 × 240 infrared focal plane arrays with a pixel pitch of 45 μm. Information on the new 640 × 480 array with a pixel pitch of 25 μm is also presented.  相似文献   

4.
Four-band quantum well infrared photodetector array   总被引:4,自引:0,他引:4  
A four-band quantum well infrared photodetector (QWIP) focal plane array (FPA) has been demonstrated by stacking different multi-quantum well structures, which are sensitive in 4–5.5, 8.5–10, 10–12, and 13–15.5 μm infrared bands. This 640 × 514 format FPA consists of four 640 × 128 pixel areas which are capable of acquiring images in these infrared bands. In this application, instead of quarter wevelength groove depth grating reflectors, three-quarter wavelength groove depth reflectors were used to couple radiation to each QWIP layer. This technique allows us to optimize the light coupling to each QWIP stack at corresponding pixels while keeping the pixel (or mesa) height at the same level, which will be essential for indium bump-bonding with the multiplexer. In addition to light coupling, these gratings serve as a contact to the active stack while shorting the unwanted stacks. Flexible QWIP design parameters, such as well width, barrier thickness, doping density, and the number of periods, were cleverly exploited to optimize the performance of each detector while accommodating requirements set by the deep groove light coupling gratings. For imaging, detector array is operated at temperature T=45 K, and each detector shows a very high D*>1×1011 cm  /W for 300 K background with f/2 optics. This initial array gave excellent images with 99.9% of the pixels working, demonstrating the high yield of GaAs technology.  相似文献   

5.
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 × 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEΔT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEΔT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEΔT, uniformity, operability, and modulation transfer functions of the 1024 × 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.  相似文献   

6.
分析了红外焦平面阵列(IRFPA)基于定标的非均匀性校正法(NUC)和基于场景的NUC算法各自的优势和问题,在此基础上提出了联合非均匀性校正方法。根据上电时刻焦平面衬底的温度值,从FLASH中提取事先存储的对应温度区间的增益和偏置校正参数,初步消除探测器的非均匀性。通过分析初步校正后图像残余非均匀性噪声的特性,提出了一种自适应非均匀性校正算法NSCT,对经过NSCT分解后的子带图像,利用贝叶斯阈值逐点进行信号方差和噪声方差估计,计算出残余非均匀性噪声后并加以去除。实验结果表明,该算法能有效提高校正精度,并具有更强的环境适应性。  相似文献   

7.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a 1,024 × 1,024 (1K × 1K), 8–12  μm infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using an L3/Cincinnati Electronics silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). We have integrated the 1K × 1K array into an SE-IR based imaging camera system and performed tests over the 50–80 K temperature range achieving BLIP performance at an operating temperature of 57 K. The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. One of the advantages of GaAs QWIP technology is the ability to fabricate arrays in a fashion similar to and compatible with silicon IC technology. The designer’s ability to easily select the spectral response of the material from 3 μm to beyond 15 μm is the result of the success of band-gap engineering and the Army Research Lab is a leader in this area. In this paper we will present the first results of our 1K × 1K QWIP array development including fabrication methodology, test data and imaging capabilities.  相似文献   

8.
基于FPGA的红外焦平面成像条纹噪声逐帧抑制算法的研究   总被引:1,自引:0,他引:1  
红外焦平面阵列是当今红外成像技术发展的主要方向,随着器件工艺的进步,红外焦平面阵列探测器有了长足的发展,然而红外图像普遍具有信噪比低的缺点,这大大限制了红外焦平面的应用。与固定图案噪声(FPN)相比,随机噪声的最大特点是每帧均不同,因此去除该类型噪声的算法必须在一帧之内完成。提出了一种新型的单帧去除此类条纹噪声的算法并加以硬件实现,在单帧内设置适合的校正参数和阈值,达到在单帧图像内有效去除条纹噪声的目的。通过算法处理前后的图像对比以及客观的MSE、PSNR测试数据对比,证明了该算法能够有效地改善焦平面器件成像质量。  相似文献   

9.
左超  陈钱  顾国华 《光子学报》2014,40(6):926-932
红外焦平面阵列的非均匀性噪音是制约红外成像质量的主要因素,非均匀性校正是红外焦平面器件应用的一个关键技术.本文提出了一种基于焦平面归一化响应特性且易于实现的非均匀性校正算法,并基于像元分布的卡方直方图提出一种新的图像非均匀性评估方法,即校正比例.该方法的校正输出考虑了每个像元的观测值与焦平面的响应信号的平均值,校正参量通过将像元的输出与其理想校正结果之间的偏差用焦平面响应的平均值建立联系而计算得到.提出的校正比例兼顾考虑了焦平面响应的时间与空间特性,比现有的图像非均匀性评估方法更能合理衡量焦平面的非均匀性程度.多种非均匀性校正的评价数据以及实验结果表明,该算法的校正效果优于两点校正法与原值拟合二阶校正法,并对于响应异常的像元具有较强的校正能力.此外其校正准确度高,所需参量少,易于实时处理,具有较强的实用价值.  相似文献   

10.
针对红外焦平面阵列强度响应的非线性失真现象,本文提出了一种基于单波长激光器测定红外焦平面阵列非线性校正曲线的方法,设计出用于测量的实验装置,并通过实验研究获得了实测的非线性校正曲线。结果表明,该方法规避了红外焦平面阵列光谱响应不均匀性的影响,满足了装置器件在工程技术中通用性和实用性的需要,在简单易行的同时保证了较高的测量精度。  相似文献   

11.
Uncooled microbolometer detector: recent developments at ULIS   总被引:1,自引:0,他引:1  
Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Fire-fighting, predictive maintenance, process control and thermography are a few of the industrial applications which could take benefit from uncooled infrared detector. Therefore, to answer these markets, a 35-μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160×120 and 384×288 arrays production. Besides a wide-band version from uncooled 320×240/45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320×240 infrared focal plane arrays with a pixel pitch of 45 μm. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570M (2005).  相似文献   

12.
面阵扫描型警戒系统目标探测方法   总被引:3,自引:0,他引:3  
根据红外面阵探测器的成像特点,提出了一种面阵扫描型警戒系统,该系统的新颖之处在于面阵的旋转会带来目标探测有效像元数目的增加,并使得目标探测信噪比得到提高.描述了使用面阵探测器扫描型警戒系统的系统参数和工作过程,推导了该系统的点扩散模型,分析了目标的成像特点,重点描述和分析了针对本系统特点的目标探测算法,并介绍了其信号处理的硬件结构.实验结果表明,基于面阵探测器的红外搜索系统具有很高目标探测概率,并且能够在强杂波环境中检测弱目标.  相似文献   

13.
The low-frequency noise is a ubiquitous phenomenon and the spectral power density of this fluctuation process is inversely proportional to the frequency of the signal. We have measured the 1/f noise of a 640 × 512 pixel quantum well infrared photodetector (QWIP) focal plane array (FPA) with 6.2 μm peak wavelength. Our experimental observations show that this QWIP FPA’s 1/f noise corner frequency is about 0.1 mHz. With this kind of low frequency stability, QWIPs could unveil a new class of infrared applications that have never been imagined before. Furthermore, we present the results from a similar 1/f noise measurement of bulk InAsSb absorber (lattice matched to GaSb substrate) nBn detector array with 4.0 μm cutoff wavelength.  相似文献   

14.
Diffractive microlens arrays can completely collect the light at the focal plane and concentrate it into a smaller spot size on the detector plane, the photodetector area can be substantially reduced. Increased gamma radiation hardening and noise reduction result from the decrease in photodetector sensitive area. The diffractive microlens arrays have been designed by considering the correlative optical and processing parameters for PtSi focal plane array. They have been fabricated on the backside of PtSi focal plane array chip by successive photolithography and Ar+ ion-beam-etching technique. The alignment of microlens array with PtSi focal plane array was completed by a backside aligner with IR light source. The practical processes and fabrication method are discussed. The performance parameters of PtSi FPA with diffractive microlens array are presented.  相似文献   

15.
A new approach to focal plane processing based on silicon injection mode devices is suggested. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind the focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. No multiplexing, digitization or serial processing would occur in the preprocessing stage. High performance is expected because approximately linear pulse coding has already been observed for input currents ranging over six orders of magnitude down to one picoampere with noise referred to input of about 10 femtoamperes. Very low power requirements suggest utility in space and in conjunction with very large arrays. Multispectral processing is possible because of compatibility with the cryogenic environment of high performance infrared detectors.  相似文献   

16.
短波红外平场光谱仪的波长定标   总被引:4,自引:0,他引:4  
针对自行研制的短波红外平场光谱仪,讨论了波长定标的原理和方法.短波红外平场光谱仪由两个分光探测单元组成,探测单元以平场凹面光栅分光,处于焦平面上的线阵列探测器探测,波长定标分为两个波段进行.为了实现准确的波长定标,针对短波红外平场光谱仪的特点设计了波长定标步骤.双单色仪可以输出光谱仪波长范围内任意波长单色光,选用双单色仪作为光谱定标光源,双单色仪的输出单色光光潜分辨力为1.5 nm,经过光谱仪的分光会聚后成像在线阵列探测器像元上,采用重心法计算出给定波长对应的像元精确位置,通过多项式拟合得出两个探测单元的波长定标系数.定标结果表明,在900~2400 nm波长范围内,定标曲线拟合误差小于0.5 nm,波长定标不确定度优丁0.6 nm.  相似文献   

17.
在兰州充气谱仪上,设计安装了一套新的焦平面探测系统,该系统包括飞行时间(TOF) 探测器、盒型硅(Si-box) 探测器阵列和反符合(Veto) 探测器3 部分。Si-box 探测器阵列是由3 块位置灵敏硅探测器(PSSD) 和8 块周边硅探测器(SSD) 构成,它对注入核的 衰变的探测效率达到80% 左右。Si-box 探测器阵列与TOF 探测器关联可以有效区分注入信号和 衰变信号。Veto 探测器与Si-box 探测器阵列和TOF 探测器关联可以反符合掉高能轻粒子对注入信号和 衰变信号的干扰。简要介绍了PSSD 的能量和位置刻度方法。这套探测器系统已经应用于40Ca+175Lu 和40Ca+169Tm 的实验。实验结果表明,该探测器系统具备很好的本底抑制能力,能够给出干净的a衰变能谱,结合能量-时间-位置关联测量方法可以实现对单原子的探测和鉴别,总体上达到了预期的设计要求。A new designed focal plane detection system was mounted at the gas-filled recoil separator at Institute of Modern Physics, Chinese Academy of Sciences, which consisted of a time-of-flight (TOF) detector, a silicon-box (Sibox) detector array and a silicon veto detector. Three position sensitive silicon detectors (PSSD) were surrounded by eight side silicon detectors (SSD) without position sensitive, forming a box of the detector open from the front side. The detection efficiency for -decays of implanted nuclei was about 80%. The anticoincidence condition for the signals from the TOF detector and Si-box detector array was used to distinguish between the pulses originating from the implanted nuclei and their -decays. The veto detector information was used to discriminate events due to high-energy charged particles.External energy calibration and position calibration of PSSD are described concisely in this work. This systemhas been used in experiments of 40Ca+175Lu and 40Ca+169Tm. Clean a-decay spectra obtained in these reactions indicated the detection system has a good performance in background suppression. Evaporation residues can be identified by the energy-time-position correlation method. On the whole, the new designed focal plane detection system has achieved thedesign requirements.  相似文献   

18.
基于复合式变焦系统结构,提出了一种三组元连续变焦设计数学模型.在该模型的指导下,针对中波制冷型15μm、640×512的凝视型焦平面探测器,设计了一款紧凑型高变倍比连续变焦光学系统.该系统工作波段为3.7~4.8μm,F数为4,利用该模型分配光焦度、计算初始点得到系统焦距变化范围为9~740mm,变倍比达80×.整个光学系统仅采用硅、锗两种红外材料,共八片透镜,利用二次成像方法及45°反射镜对系统进行了U型折叠,在实现100%冷屏效率的同时有效控制了横向和纵向尺寸.完成了各动组凸轮曲线的优化设计和对比分析,从光学传递函数、点列图、畸变、冷反射及环境适应特性等多方面对系统进行了分析.结果表明,该系统具有变焦轨迹平滑、冷反射抑制特性优良、成像质量佳、环境适应性好及工程可实现性等优点.该数学模型的正确性和可行性也得到了验证.  相似文献   

19.
杨亚生 《应用光学》1993,14(2):39-43
介绍PtSi肖特基势垒红外焦平面列阵的工作原理,分析探测器的最佳化结构,评述国内外肖特基势垒红外焦平面列阵的发展。  相似文献   

20.
6倍制冷型中红外连续变焦光学系统设计   总被引:4,自引:1,他引:3  
张庭成  廖志波 《光学学报》2012,32(11):1122004
提出了一种求解变焦方程的新方法,并针对中红外320×256元制冷型焦平面阵列探测器,设计了一个3.7~4.8 μm波段的透射式红外连续变焦距光学系统,其F数恒定为2,最小焦距值为22 mm,变倍比为6。系统由变焦物镜和二次成像系统构成,包括7片硅、锗透镜,并引入非球面以校正系统各种轴外像差,同时利用两个平面反射镜折叠光路以减小尺寸。在空间频率16 lp/mm处和全焦距范围内,系统各个视场的光学调制传递函数均大于0.55;在接收面为30 μm×30 μm的探测器敏感元内,能量集中度大于80%。因此该系统具有较好的成像质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号