首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex formation constants for styrene (donor)-acrylonitrile (acceptor) and styrene-maleic anhydride (acceptor) systems are found to be 0.19 ± 0.01 and 0.28 ± 0.01 l/mol (1H NMR, CCl4, 298 K); the same values are characteristic for three-component systems of these monomers. The calculated ΔH 0 values (the AM1 method) for styrene-acrylonitrile (C1) and styrene-maleic anhydride (C2) complexes comprise ?1.24 and ?2.30 kJ/mol. Changes in charges on double bonds of complex-bonded molecules are in the range from 0.001 to 0.006 au. These values are typical of π-π complexes. By analyzing the composition and rate of bulk copolymerization (333 K, 0.03 mol/l AIBN), we have shown that two complexes are involved in chain propagation: r 1 = $ k_{2C_1 } /k_{2C_2 } $ = 0.26 ± 0.015 and r 2 = $ k_{3C_2 } /k_{3C_1 } $ = 4.17 ± 0.143.  相似文献   

2.
Acrylonitrile was copolymerized in bulk with cinnamonitrile (I), ethyl benzylidenecyanoacetate (II), and benzylidenemalononitrile (III) by radical initiation up to low conversions. The conventional scheme of copolymerization fitted all the three copolymer pairs.  相似文献   

3.
4.
Copolymers of methyl α-cyanocrotonate with styrene, acrylonitrile, and vinyl acetate were prepared in bulk by free radical initiation. The copolymerization parameters were determined for each pair by several methods. The basic properties, that is, intrinsic viscosity, solubility, melting range, and glass transition temperature of the obtained copolymers, were determined.  相似文献   

5.
New vinylsilanes (M2), i. e. phenylvinylsilane (I), allylmethylsilane (II), allylphenylsilane (III), and p-vinylphenylmethylsilane (IV), were prepared and copolymerized with styrene (M1). The monomer reactivity ratios were r1 = 5.7 and r2 = 0, r1 = 36 and r2 = 0, r1 = 29 and r2 = 01, and r1 = 0.91 and r2 = 1.1, respectively. From the results of infrared and NMR spectra it was indicated that the vinylsilanes participated in copolymerization in the form of a vinyl type of polymerization and not in the form of a hydrogen-transfer type of polymerization. The reaction of copolymer with alcohols and methyl methacrylate and appropriate catalysts was investigated.  相似文献   

6.
7.
Styrene was copolymerized in bulk with vinyltriethoxysilane at 80°C and vinyltriacetoxysilane at 60, 80, and 100°C with the use of benzoyl peroxide as an initiator at low conversions. Copolymer composition was determined from the silicon content and reactivity ratios were calculated by the conventional scheme of copolymerization. The low r1 value (styrene) in the styrene-vinyltriacetoxysilane system (St–VTAS) as compared to styrene-vinyltriethoxysilane (St–VTES) copolymerization may be attributed to higher reactivity of VTAS towards the polystyryl radical. Further, in the St–VTAS system, r1 tends to decrease with increasing polymerization temperature. The influence of silicon comonomer on properties of the copolymers (intrinsic viscosity, solubility, dielectric and thermal behavior) was studied.  相似文献   

8.
丙烯腈(AN)—苯乙烯(St)与聚丙烯(PP)非均相接枝共聚,得杨梅形树脂。研究了AN/St摩尔比对接枝聚合的影响,发现苯乙烯相对含量增大时,非接枝物产量增加,接枝率和接枝效率相应下降。从接枝物的C、H、N分析可计算出聚丙烯、丙烯腈和苯乙烯的组成比例。此外,用二乙烯基苯(DVB)作交联剂,制备了PP-g-(AN-co-St-co-DVB)接枝共聚物—交联型薄壳树脂,交联剂的存在使单体转化率和接枝效率高达100%。  相似文献   

9.
2-Isopropenyl-4-isopropyl-2-oxazolin-5-one (M2), was copolymerized with styrene (M1), and the monomer reactivity ratios were determined to be r1 = 0.31 ± 0.03, r2 = 1.12 ± 0.10. New isomerized oxazolones (M2), 2-isopropylidene-4-methyl-3-oxazolin-5-one, 2-isopropylidene-4-isopropyl-3-oxazolin-5-one, and 2-isopropylidene-4-isobutyl-3-oxazolin-5-one were prepared and copolymerized with styrene. The monomer reactivity ratios were: r1 = 0.36 = 0.07, r2 = 0.0; r1 = 0.39 ± 0.06, r2 = 0.00 ± 0.10; r1 = 0.39 ± 0.10, r2 = 0.0, respectively. The isomerized oxazolones showed no tendency towards homopolymerization by radical initiator. From the results of infrared and NMR spectra and hydrolysis of the copolymer, it was indicated that the isomerized oxazolones participated in copolymerization in the form of 1–4 polymerization of the conjugated dienes (exo double bond at C2 and the C?N in the ring). Copolymers reacted with nucleophilic reagents such as amines and alcohols.  相似文献   

10.
11.
The donor–acceptor interaction of acrylonitrile (AN) with indene (In) has been investigated by means of ultraviolet spectroscopy and dielectric polarization measurements. The latter method yielded a value of 0.5 for the association constant of the charge-transfer-complex (CTC) and a 4.02 D for its dipole moment. The copolymerization of the two monomers was characterized by a tendency towards alternation when conducted in the bulk. This might be due to the participation of a weak CTC in the process of copolymerization. However, this tendency disappeared in polar solvents such as DMF.  相似文献   

12.
This paper reports briefly the results of copolymerization of ethyl methacrylate (EMA) and acrylonitrile (AN). The effect of the medium on the reactivity ratios was investigated. It was found that the medium had no effect on the value of r for EMA whereas r for AN for solution copolymerization was different from the value for bulk or emulsion copolymerizations. The values remained constant up to about 70 per cent conversion.  相似文献   

13.
14.
Acrylonitrile was copolymerized in solution with α-cyanocinnamamide up to low conversions. The conventional scheme of copolymerization fitted this copolymer. The basic properties, such as solubility, viscosity, and thermal behavior, of the copolymer prepared in bulk and in solution were determined.  相似文献   

15.
Copolymers of acrylonitrile with cinnamonitrile (I), ethyl benzylidenecyanoacetate (II), and benzylidenemalononitrile (III) were prepared in suspension up to high conversions. Films and molded specimens were made from the copolymers and their basic physical and mechanical properties, such as solubility, viscosity, glass transition temperature, and tensile and compressive strength were determined. Further, treatment by heat and ultraviolet light, the permeability of water vapors, and the behavior of films in a weathering tester were studied.  相似文献   

16.
The synthesis of styrene‐acrylonitrile copolymers by semicontinuous heterophase polymerization is reported here. The effect of feed composition at a fixed addition rate of monomer mixture on kinetics, particle size, polymer content, and molar masses, was studied. This process permits the synthesis of nanolatexes containing narrow size‐distribution particles with number‐average diameter (Dn) of about 18 nm, polymer content as high as 23 wt %, and copolymer‐to‐surfactant weight ratios between 23 and 25, depending on monomer feeding rate, which are larger than those reported for microemulsion copolymerization of several comonomers. Copolymers with homogeneous composition similar to the feeding monomers composition were obtained thorough the reaction, which is difficult to achieve by batch polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Copolymerization of butadiene (Bd) and styrene (St) was carried out in toluene at 50 °C by a conventional rare earth catalytic system, Nd(naph)3-Al(i-Bu)3-Al(i-Bu)2Cl. It exhibited a high catalytic activity and high stereospecificity in the copolymerization. The influences of the conditions in polymerization on the yield, composition, microstructure and molecular weight of copolymer were thoroughly studied. According to the 13C-NMR spectrum, the resultant copolymer containing 18% St units, and the diad fraction of St-trans Bd or St-vinyl Bd can hardly be found in its 13C-NMR. The cis-1,4 content of Bd unit of the copolymer decreased little with the increase of St content. The GPC curves indicate the presence of two kinds of active sites in the polymerization.  相似文献   

18.
19.
Homo- and copolymerizations of butadiene (BD) and styrene (St) were carried out by gadolinium catalysts having various tricarboxylate ligands [Gd(OCOR)3: R = CH3, CH2Cl, CHCl2, CCl3, and CF3], to investigate the effects of ligands and discuss the cis polymerization mechanism. Polymerization of BD with Gd(OCOR)3—(i—Bu)3Al—Et2AlCl catalysts was carried out in hexane at 50°C. By each catalyst, poly(BD) having a high cis content (cis = 97–99%) in 22–85% yields for 2–24 h were obtained. The ligands with low pKa values increased the polymerization activity as follows: R of Gd(OCOR)3: CF3 > CCl3 > CHCl2 > CH2Cl ~ CH3. On the other hand, in the polymerization of St or copolymerization of BD and St under similar conditions, the highest activity was attained by a Gd(OCOCCI3)3- based catalyst. The difference in the optimum ligand among the homo- and copolymerization of BD and St was discussed on the basis of energy levels of the catalysts. In the copolymers of BD and St, the cis-1,4 content of the BD unit decreased with increasing St content. Furthermore, according to the diad analysis of copolymers (St content ~ 14.5 mol %) by 13C NMR spectroscopy, the low cis value of the BD unit was observed in the St-BD diad (cis/trans/vinyl = 24/53/23), while the high cis value of the BD unit remained in the BD-BD diad (cis/trans/vinyl = 89/10/1). These results suggest that the terminal BD unit is controlled by the cis configuration by the coordination between the penultimate cis vinylene unit and the gadolinium metal catalyst, whereas the presence of the penultimate St unit interferes with cis polymerization of the terminal BD unit. The difference in the coordination mechanism in the course of polymerization between rare earth metal and transition metal catalysts such as the Ni(acac)2 and Co(acac)3-based catalyst was also discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Homo- and copolymerization of butadiene and styrene in the presence of the catalyst system Nd(octanoate)3/CCl4/Al(iBu)3 (iBu: isobutyl) were investigated at 60°C in heptane as solvent. The initiating catalyst system is very effective in the polymerization of butadiene. However, the presented copolymerization of butadiene and styrene is only practicable when using a special addition order of the catalyst components and a prescribed ageing phase. Copolymers obtained from various monomer feed ratios were characterized by 1H and 13C NMR spectroscopy and gel-permeation chromatography (GPC). The copolymer characteristics especially microstructure, molar mass and molar-mass distribution (MMD) are strongly dependent on the composition of the monomer mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号