首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Proton-transfer-reaction mass-spectrometry (PTR-MS) developed in the 1990s is used today in a wide range of scientific and technical fields. PTR-MS allows for real-time, online determination of absolute concentrations of volatile (organic) compounds (VOCs) in air with high sensitivity (into the low pptv range) and a fast response time (in the 40–100 ms time regime). Most PTR-MS instruments employed so far use an ion source consisting of a hollow cathode (HC) discharge in water vapour which provides an intense source of proton donor H3O+ ions. As the use of other ions, e.g. NO+ and O2+, can be useful for the identification of VOCs and for the detection of VOCs with proton affinities (PA) below that of H2O, selected ion flow tube mass spectrometry (SIFT-MS) with mass selected ions has been applied in these instances. SIFT-MS suffers, however, from at least two orders lower reagent ion counts rates and therefore SIFT-MS suffers from lower sensitivity than PTR-MS.Here we report the development of a PTR-MS instrument using a modified HC ion source and drift tube design, which allows for the easy and fast switching between H3O+, NO+ and O2+ ions produced in high purity and in large quantities in this source. This instrument is capable of measuring low concentrations (with detection limits approaching the ppqv regime) of VOCs using any of the three reagent ions investigated in this study. Therefore this instrument combines the advantages of the PTR-MS technology (the superior sensitivity) with those of SIFT-MS (detection of VOCs with PAs smaller than that of the water molecule and the capability to distinguish between isomeric compounds).We will first discuss the setup of this new PTR+SRI-MS mass spectrometer instrument, its performance for aromates, aldehydes and ketones (with a sensitivity of up to nearly 1000 cps/ppbv and a detection limit of about several 100 ppqv) and finally give some examples concerning the ability to distinguish structural isomeric compounds.  相似文献   

2.
This paper describes how weakly bound adduct ions form when the precursor ions used in selected ion flow mass spectrometry, SIFT-MS, analyses, viz. H3O+, NO+ and O2+, associate with the major components of air and exhaled breath, N2, O2 and CO2. These adduct ions, which include H3O+N2, H3O+CO2, NO+CO2, O2+O2 and O2+CO2, are clearly seen when dry air containing 5% CO2 (typical of that in exhaled breath) is analysed using SIFT-MS. These adduct ions must not be misinterpreted as characteristic product ions of trace gases; if so, serious analytical errors can result. However, when exhaled breath is analysed these adduct ions are partly removed by ligand switching reactions with the abundant water molecules and the problems they represent are alleviated. But the small fractions of the adduct ions that remain in the SIFT-MS spectra, and especially when they are isobaric with genuine characteristic product ion of breath trace gases, can result in erroneous quantifications; such is the case for H3O+N2 interfering with breath ethanol analysis and H3O+CO2 with breath acetaldehyde analysis. However, these difficulties can be overcome when the isobaric adduct ions are properly recognised and excluded from the analyses; then these two important compounds can be properly quantified in breath. The presence of O2+CO2 in the product ion spectra interferes with the analysis of CS2 present at low levels in exhaled breath. It is likely that similar problems will occur as other trace compounds are detected in exhaled breath when consideration will have to be given to the possibility of overlapping between their characteristic product ions and ions produced by hitherto unknown reactions. Similar problems are evident in other systems; for example, H3O+CH4 adduct ions are observed in both SIFT-MS analyses of methane rich mixtures like biologically generated waste gases and in model planetary atmospheres.  相似文献   

3.
The positive APCI-mass spectra in air of linear (n-pentane, n-hexane, n-heptane, n-octane), branched [2,4-dimethylpentane, 2,2-dimethylpentane and 2,2,4-trimethylpentane (i-octane)], and cyclic (cyclohexane) alkanes were analyzed at different mixing ratios and temperatures. The effect of air humidity was also investigated. Complex ion chemistry is observed as a result of the interplay of several different reagent ions, including atmospheric ions O2+•, NO+, H3O+, and their hydrates, but also alkyl fragment ions derived from the alkanes. Some of these reactions are known from previous selected ion/molecule reaction studies; others are so far unreported. The major ion formed from most alkanes (M) is the species [M − H]+, which is accompanied by M+• only in the case of n-octane. Ionic fragments of C n H2n +1/+ composition are also observed, particularly with branched alkanes: the relative abundance of such fragments with respect to that of [M − H]+ decreases with increasing concentration of M, thus suggesting that they react with M via hydride abstraction. The branched C7 and C8 alkanes react with NO+ to form a C4H10NO+ ion product, which upon collisional activation dissociates via HNO elimination. The structure of t-Bu+(HNO) is proposed for such species, which is reasonably formed from the original NO+(M) ion/molecule complex via hydride transfer and olefin elimination. Finally, linear alkanes C5–C8 give a product ion corresponding to C4H7+(M), which we suggest is attributed to addition of [M − H]+ to C4H8 olefin formed in the charge-transfer-induced fragmentation of M. The results are relevant to applications of nonthermal plasma processes in the fields of air depuration and combustion enhancement.  相似文献   

4.
We have investigated gas‐phase fragmentation reactions of protonated benzofuran neolignans (BNs) and dihydrobenzofuran neolignans (DBNs) by accurate‐mass electrospray ionization tandem and multiple‐stage (MSn) mass spectrometry combined with thermochemical data estimated by Computational Chemistry. Most of the protonated compounds fragment into product ions B ([M + H–MeOH]+), C ([ B –MeOH]+), D ([ C –CO]+), and E ([ D –CO]+) upon collision‐induced dissociation (CID). However, we identified a series of diagnostic ions and associated them with specific structural features. In the case of compounds displaying an acetoxy group at C‐4, product ion C produces diagnostic ions K ([ C –C2H2O]+), L ([ K –CO]+), and P ([ L –CO]+). Formation of product ions H ([ D –H2O]+) and M ([ H –CO]+) is associated with the hydroxyl group at C‐3 and C‐3′, whereas product ions N ([ D –MeOH]+) and O ([ N –MeOH]+) indicate a methoxyl group at the same positions. Finally, product ions F ([ A –C2H2O]+), Q ([ A –C3H6O2]+), I ([ A –C6H6O]+), and J ([ I –MeOH]+) for DBNs and product ion G ([ B –C2H2O]+) for BNs diagnose a saturated bond between C‐7′ and C‐8′. We used these structure‐fragmentation relationships in combination with deuterium exchange experiments, MSn data, and Computational Chemistry to elucidate the gas‐phase fragmentation pathways of these compounds. These results could help to elucidate DBN and BN metabolites in in vivo and in vitro studies on the basis of electrospray ionization ESI‐CID‐MS/MS data only.  相似文献   

5.
We studied the time‐of‐flight secondary ion mass spectrometry fragmentation mechanisms of polystyrenes—phenyl‐fluorinated polystyrene (5FPS), phenyl‐deuterated polystyrene (5DPS), and hydrogenated polystyrene (PS). From the positive ion spectra of 5FPS, we identified some characteristic molecular ion structures with isomeric geometries such as benzylic, benzocyclobutene, benzocyclopentene, cyclopentane, and tropylium systems. These structures were evaluated by the B3LYP‐D/jun‐cc‐pVDZ computation method. The intensities of the C7H2F5+ (m/z = 181), CyPent‐C9H3F4+ (m/z = 187), CyPent‐C9H4F5+ (m/z = 207), and CyPent‐C9H2F5+ (m/z = 205) ions were enhanced by resonance stabilization. The positive fluorinated ions from 5FPS tended to rearrange and produce fewer fluorine‐containing molecular ions through the loss of F (m/z = 19), CF (m/z = 31), and CF2 (m/z = 50) ion fragments. Consequently, the fluorine‐containing polycyclic aromatic ions had much lower intensities than their hydrocarbon counterparts. We propose the fragmentation mechanisms for the formation of C5H5+, C6H5+, and C7H7+ ion fragments, substantiated with detailed analyses of the negative ion spectra. These ions were created through elimination of a pentafluoro‐phenyl anion (C6F5) and H+, followed by a 1‐electron‐transfer process and then cyclization of the newly generated polyene with carbon‐carbon bond formation. The pendant groups with elements of different electronegativities exerted strong influences on the intensities and fragmentation processes of their corresponding ions.  相似文献   

6.
The losses of methyl and ethyl through the intermediacy of the [2-butanone]+˙ ion are shown to be the dominant metastable decomposition of 14 of 19 [C4H8O]+˙ ions examined. The ions that decompose via the [2-butanone]+˙ structure include ionized aldehydes, unsaturated and cyclic alcohols and enolic ions. [Cyclic ether]+˙ [cyclopropylmethanol]+˙ and [2-methyl-1-propen-1-ol]+˙ ions do not decompose through ionized 2-butanone. The rearrangements of various [C4H8O]+˙ ions the the 2-butanone ion were investigated by means of deuterium labeling. Those pathways involve up to eight steps. Ions with the oxygen on the end carbon rearrange to a common structure or mixture of structures. Those ions which ultimately rearrange to the [2-butanone]+˙ ion then undergo oxygen shifts from the terminal to the second and third carbons at about equal rates. However, this oxygen shift does not precede the losses of water and ethylene. Losses of water and ethylene were unimportant for ions with the oxygen initially on the second carbon. Ionized n-butanal and cyclobutanol, but not other [C4H8O]+˙ ions, undergo reversible hydrogen exchange between the oxygen and the terminal carbon. Rearrangement of ionized n-butanal to the [cyclobutanol]+˙ ion is postulated.  相似文献   

7.
Six alkyl alcohols were studied using thermospray mass Spectrometry. Whereas the dominant ion in the spectrum up to a repeller potential of 120 V was [M + NH4]+, above that potential [M + H]+ and fragment ions appeared. The fragments observed were largely due to hydrogen release from alkyl ions ([CnH2n+1]+ – H2 → [CnH2n-1]+) and loss of water or some other stable molecule from the same species. The results are compared with those from ionization of the same alcohols under electron impact and photoionization conditions and with results obtained for methanol under thermospray conditions.  相似文献   

8.
Reactions that proceed within mixed ethylene–methanol cluster ions were studied using an electron impact time-of-flight mass spectrometer. The ion abundance ratio, [(C2H4)n(CH3OH)mH+]/[(C2H4)n(CH3OH)m+], shows a propensity to increase as the ethylene/methanol mixing ratio increases, indicating that the proton is preferentially bound to a methanol molecule in the heterocluster ions. The results from isotope-labelling experiments indicate that the effective formation of a protonated heterocluster is responsible for ethylene molecules in the clusters. The observed (C2H4)n(CH3OH)m+ and (C2H4)n(CH3OH)m–1CH3O+ ions are interpreted as a consequence of the ion–neutral complex and intracluster ion–molecule reaction, respectively. Experimental evidence for the stable configurations of heterocluster species is found from the distinct abundance distributions of these ions and also from the observation of fragment peaks in the mass spectra. Investigations on the relative cluster ion distribution under various conditions suggest that (C2H4)n(CH3OH)mH+ ions with n + m ≤ 3 have particularly stable structures. The result is understood on the basis of ion–molecule condensation reactions, leading to the formation of fragment ions, $ {\rm CH}_2=\!=\mathop {\rm O}\limits^ + {\rm CH}_3 $ and (CH3OH)H3O+, and the effective stabilization by a polar molecule. The reaction energies of proposed mechanisms are presented for (C2H4)n(CH3OH)mH+(n + m ≤ 3) using semi-empirical molecular orbital calculations.  相似文献   

9.
We report the basis set dependencies and the basis set superposition errors for the hydrated complexes of K+ and Na+ ions in relation to the recent studies of the KcsA potassium channel. The basis set superposition errors are estimated by the geometry optimizations at the counterpoise-corrected B3LYP level. The counterpoise optimizations alter the hydration distances by about 0.02–0.03 Å. The enthalpies and free energies for K+ + n(H2O) → [K(H2O)n]+ and Na+ + n(H2O) → [Na(H2O)n]+ (n = 1–6) are compared between the theoretical and experimental values. The results show that the addition of diffuse functions to K, Na, and O species are effective. However, it is also found that the counterpoise corrections using diffuse functions work so as to underestimate the free energies for the complexes with increasing the hydration number. The stabilization energies in aqueous solution are larger for a Na+ ion than for a K+ ion, suggesting the contributions of their dehydration processes to the ion selectivity of the KcsA potassium channel. The changes in coordination distance between the isolated [K(H2O)8]+ and the [K(H2O)8]+ in the KcsA potassium channel indicate the importance of hydrogen bondings between the first hydration shell and the outer hydration shells.  相似文献   

10.
The 12.1 eV, 75°C electron impact mass spectra of 24 urethanes, RNHCO2C2H5 [R ? H, C2H2n +1 (n = 1-8), CH2?CHCH2, Ph, PhCH2 and PhCH2CH2], and seven symmetrically disubstituted urethanes R2NCO2C2H5 (R ? Cn H2n + 1 (n = 1?4)) are reported and discussed. All 31 spectra show appreciable molecular ion peaks. For n ?Cn H2n +1 NHCO2C2H5, M+ ˙ usually is the most abundant ion in the spectrum. A peak at m/z 102 of comparable intensity also is present; this corresponds to formal cleavage of the bond connecting the α- and β-carbon atoms in the N-alkyl group, though it is unlikely that the daughter ion has the structure [CH2?NHCO2C2H5]+. In the RNHCO2C2H5 series, branching at the α-carbon atom enhances the relative abundance of the ion arising by notional α-cleavage at the expense of that of M+ ˙. Formal cleavage of the bond between β- and γ-carbon atoms occurs to some extent for [RNHCO2C2H5]+˙ ions; this reaction provides information on the degree of branching at the β-carbon, especially if metastable molecular ions are considered. The higher n-CnH2n +1NHCO2C2H5 (n = 5?8) urethanes exhibit two other significant ions in their mass spectra. First, there is a peak at [M ? C2H5]+. Secondly, a peak is present at m/z 90; the most plausible structure for this ion is [H2N(HO)COC2H5]+, arising by double hydrogen transfer from the alkyl group and expulsion of a [CnH2n ?1]˙ radical. Ions originating from secondary decomposition of the primary ionic species are generally of only very low abundance in these spectra.  相似文献   

11.
On the basis of unimolecular and collisionally activated decompositions, as well as their charge stripping behaviour, [C7H8]+˙ and [C7H8]2+ ions from a variety of precursors have been studied. In particular, structural characteristics of molecular ions of toluene, cycloheptatriene, norborna-2,5-diene and quadricyclane have been compared to those of [C7H8]+˙ and [C7H8]2+ rearrangement fragment ions obtained from n-butylbenzene, 2-phenylethanol and n-pentylbenzene. Severe interferences from [C7H7]2+˙ ion fragmentations have been observed and rationalized.  相似文献   

12.
Water elimination from ionized n-butanol reflects near randomization of all hydrogens in ions decomposing after ~10?5s. This probably takes place in ion-neutral complexes by formation of a cyclobutane ion–H2O complex and/or rearrangement within [C4H8]+˙ in open-chain [C4H8+˙? H2O] complexes, in either case accompanied by hydrogen exchange between water and open-chain hydrocarbon moieties. Extensive hydrogen rearrangements in which restraints on conventional transition-state ring size have little apparent influence may generally be ion–neutral complex-mediated processes.  相似文献   

13.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) equipped with a bismuth imaging source and an argon gas cluster ion beam (GCIB) was used to image polished cross‐sections of four automotive multilayer paint samples. Secondary ion mass spectrometry chemical imaging of the individual layers was possible after a GCIB sputter ion dose of (7 × 1015) ions/cm2 was applied for the removal of polishing residue, at which point the chemical composition of the individual clear coats could be distinguished using principal components analysis. For the differentiation of the four clear coat chemistries, only four secondary ion peaks were necessary; C2H5O+ (m/z 45.04), C9H9NO2+ (m/z 163.09), and C10H11NO2+ (m/z 177.10) that appeared to be fragments of the carbamate‐based clear coat, and C7H11+ (m/z 95.09) that was strongly associated with the polyurethane‐based clear coat. Clear identification of the four paint samples based on this short peak list highlights the strength of the SIMS technique as a potential forensic approach to discriminate automotive paints and suggests that many more variables could be included in the multivariate and statistical analysis to differentiate a wider range of clear coat chemistries.  相似文献   

14.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

15.
Using mass spectrometric technique, the effect of geometrical isomerism on the first and higher appearance energy values for C4H3 +, C4H7 + and C3H,3 + ions obtained from cis-2-butene andtrans-2-butene is reported. The structure in the ionization efficiency curves (studied for 9 eV above threshold) for the same ions obtained from the two isomers is reported and compared. It is believed that at threshold C4H7 + fragment is formed from the two isomers as methallyl ion. For C3H3 + fragment formed from the cw-isomer at threshold the proposed structure is the propargyl ion with ΔHf equal to 279-4 kcal/mole while for that ion obtained fromtransisomer the proposed structure is the allenyl ion with ΔHf equal to 296.6 kcal/mole.  相似文献   

16.
For compounds C6H5X (X?Cl, Br, I) under chemical ionization conditions, methylamine causes ipso substitution of X by [NH2CH3]+ and by [NH2]+˙. C6H5F is less reactive; it gives some [C6H5NH2]+˙. Nitrobenzene gives an adduct ion [M+CH3NH3]+, a reduction product ion [C6H5NO2]+˙, and an ion at m/z93, probably a substitution product [C6H5NH2]+˙, but no [C6H5NH2CH3]+. It is also shown that the ion m/z94, formed from nitrobenzene with ammonia as reagent gas, is a substitution product rather than a reduction product ion. Carbonyl compounds C6H5. CO. X give adduct ions and some substitution, mainly [C6H5NH2]+˙.  相似文献   

17.
The gas phase reactions of metal plasma with alcohol clusters were studied by time of flight mass spectrometry (TOFMS) using laser ablation-molecular beam (LAMB) method. The significant dependence of the product cluster ions on the molecular beam conditions was observed. When the plasma acted on the low density parts of the pulsed molecular beam, the metal-alcohol complexes M^+An (M=Cu, Al, Mg, Ni and A=C2H5OH, CH3OH) were the dominant products, and the sizes of product ion clusters were smaller. While the plasma acted on the high density part of the beam, however, the main products turned to be protonated alcohol clusters H^+An and, as the reactions of plasma with methanol were concerned, the protonated water-methanol complexes H3O^+(CH3OH)n with a larger size (n≤12 for ethanol and n≤24 for methanol). Similarly, as the pressure of the carrier helium gas was varied from 1 × 10^5 to 5 × 10^5 Pa, the main products were changed from M^+An to H^+An and the sizes of the clusters also increased. The changes in the product clusters were attributed to the different formation mechanism of the output ions, that is, the M^+An ions came from the reaction of metal ion with alcohol clusters, while H^+An mainly from collisional reaction of electron with alcohol clusters.  相似文献   

18.
In the ion/molecule reactions of the cyclometalated platinum complexes [Pt(L? H)]+ (L=2,2′‐bipyridine (bipy), 2‐phenylpyridine (phpy), and 7,8‐benzoquinoline (bq)) with linear and branched alkanes CnH2n+2 (n=2–4), the main reaction channels correspond to the eliminations of dihydrogen and the respective alkenes in varying ratios. For all three couples [Pt(L? H)]+/C2H6, loss of C2H4 dominates clearly over H2 elimination; however, the mechanisms significantly differs for the reactions of the “rollover”‐cyclometalated bipy complex and the classically cyclometalated phpy and bq complexes. While double hydrogen‐atom transfer from C2H6 to [Pt(bipy? H)]+, followed by ring rotation, gives rise to the formation of [Pt(H)(bipy)]+, for the phpy and bq complexes [Pt(L? H)]+, the cyclometalated motif is conserved; rather, according to DFT calculations, formation of [Pt(L? H)(H2)]+ as the ionic product accounts for C2H4 liberation. In the latter process, [Pt(L? H)(H2)(C2H4)]+ (that carries H2 trans to the nitrogen atom of the heterocyclic ligand) serves, according to DFT calculation, as a precursor from which, due to the electronic peculiarities of the cyclometalated ligand, C2H4 rather than H2 is ejected. For both product‐ion types, [Pt(H)(bipy)]+ and [Pt(L? H)(H2)]+ (L=phpy, bq), H2 loss to close a catalytic dehydrogenation cycle is feasible. In the reactions of [Pt(bipy? H)]+ with the higher alkanes CnH2n+2 (n=3, 4), H2 elimination dominates over alkene formation; most probably, this observation is a consequence of the generation of allyl complexes, such as [Pt(C3H5)(bipy)]+. In the reactions of [Pt(L? H)]+ (L=phpy, bq) with propane and n‐butane, the losses of the alkenes and dihydrogen are of comparable intensities. While in the reactions of “rollover”‐cyclometalated [Pt(bipy? H)]+ with CnH2n+2 (n=2–4) less than 15 % of the generated product ions are formed by C? C bond‐cleavage processes, this value is about 60 % for the reaction with neo‐pentane. The result that C? C bond cleavage gains in importance for this substrate is a consequence of the fact that 1,2‐elimination of two hydrogen atoms is no option; this observation may suggest that in the reactions with the smaller alkanes, 1,1‐ and 1,3‐elimination pathways are only of minor importance.  相似文献   

19.
[C2H5S]+ ions (m/e 61) with different initial structures were generated in the mass spectrometer from twelve precursor ions. Abundance ratios of competing metastable ion decompositions were used to determine whether these ions decompose through the same or different reaction channels. It was concluded that all [C2H5S]+ ions isomerize to a common structure or mixture of structures prior to decomposition in the first field free region. From 13C labelling experiments it was concluded that [C2H5S]+ ions generated from the molecular ions of 2-propanethiol-2-[13C], partially rearrange to a symmetrical structure before decomposition to [CHS]+ and CH4, whereas in [C2H5S]+ ions generated from the the molecular ions of 1,2-bis-(thiomethoxy-[13C]) ethane, the two carbon atoms become fully equivalent before CH4 loss occurs.  相似文献   

20.
Negative chemical ionization mass spectrometry is used as a probe to examine reactions between hydrocarbon radicals and metal complexes in the gas phase. The methane negative chemical ionization mass spectra of 27 complexes of cobalt(II ), nickel(II ) and copper(II ) in the presence of O4, O2N2 and N4 donor atom sets are characterized by two dominant series of adduct ions of the form [M + CnH2n]? and [M + CnH2n+1]? at m/z values above the molecular ion, [M]?. Insertion of the CH radical into the ligand followed by radical/radical recombination and electron capture is proposed as the major mechanism leading to the formation of [M + CnH2n]? adduct ions. A second pathway involves ligand substitution by CnH2n+1 radicals concomitant with H elimination and electron capture. Oxidative addition at the metal followed by ionization is suggested as the principal pathway for the formation of [M + CnH2n+1]? adduct ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号