首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and selective method using ammonium pyrrolidinedithiocarbamate modified activated carbon (APDC-AC) as solid phase extractant has been developed for speciation of As(III) in water samples. At pH 1.8–3.0, As(III) could be adsorbed quantitatively by APDC-AC, and then eluted completely with 2.0 mL of 0.1 mol L−1 HNO3, while As(V) could almost not be retained at pH 1–7. Effects of acidity, sample flow rate, concentration of elution solution and interfering ions on the recovery of As(III) have been systematically investigated. Under the optimal conditions, the adsorption capacity of APDC-AC for As(III) is 7.3 mg g−1. The detection limit (3σ) of As(III) is 0.05 ng mL−1 for graphite furnace atomic absorption spectrometry (GFAAS) with enrichment factor of 50, and the relative standard deviation (RSD) is 4.1% (n = 9, C = 5 ng mL−1). The method has been applied to the determination of trace As(III) in water, and the recoveries of As(III) are 100 ± 10%. Correspondence: Yiwei Wu, Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, P.R. China  相似文献   

2.
 A novel catalytic procedure for zirconium was proposed based on Zr(IV) catalyzed oxidation of gallocyanine by hydrogen peroxide in hexamethylene tetramine-hydrochloric acid buffer medium. The calibration graph is linear for 0–110 ngċml−1, and the detection limit is 0.4 ngċml−1 Zr(IV). Most foreign ions do not interfere with the determination, except for Cu2+, Fe3+ and Cr(VI). The interferences of Cu2+ and Fe3+ could be eliminated by masking with EDTA and mannitol, and that of Cr(VI) by reducing to Cr(III) with ascorbic acid. The typical features of this procedure are that it is sensitive for zirconium, and the determination could be carried out at room temperature. It had been used to the determination of zirconium in zirconium bronze, simulated samples and a certified reference material. The recoveries were 98.6 ∼ 102%, and relative standard deviations (R.S.D.) were 0.9 ∼ 1.5%, respectively. Received September 12, 1999. Revision April 10, 2000.  相似文献   

3.
p-Toluenesulfonylamide was immobilized on silica gel and on nm-sized silicium dioxide (SiO2). Their adsorption efficiency toward metal ions was investigated by the batch equilibrium technique. Although silica gel and nm-SiO2 have the same composition (silicon and oxygen), the difference in their sizes and surface structures results in distinct chemical activity and selectivity. At pH 4, the adsorption capacity of modified silica gel adsorbent was found to be 4.9, 5.0, 33.2, and 12.6 mg g−1 for Cr(III), Cu(II), Pb(II) and Zn(II), respectively. However, the adsorption capacity of nm-SiO2 adsorbent toward Cr(III) was 26.7 mg g−1 under ultrasonic dispersing. The potential application of p-toluenesulfonylamide-modified silica gel for simultaneous preconcentration of trace chromium, copper, lead and zinc from two standard reference materials and two food samples was performed with satisfactory results. Correspondence: Xijun Chang, Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China  相似文献   

4.
 Zirconium (IV) was determined spectrophotometrically by reaction with quercetin as primary ligand and oxalate as secondary ligand. Polyvinylpyrrolidone (PVP) was used as protective colloid to solubilize the formed zirconium quercetin oxalate ternary complex. The molar absorptivity of the 1:3:1 (zirconium–quercetin–oxalate) complex is 7.31 × 104 L·mol−1 cm−1 at 430 nm with a stability constant of 8.2 × 1020 and its detection limit is 0.16 mg/L. Beer’s law is rectilinear up to 1.46 mg/L of zirconium (IV). The sensitivity index is 1.25 ng cm−2. The reaction of aluminium (III) with quercetin in presence of PVP as a surfactant has been studied spectrophotometrically. The molar absorptivity of the 1:3 (aluminium–quercetin) complex is 8.09 × 104 × L·mol−1·cm−1 at 433 nm, its stability constant is 2.6 × 1013 with sensitivity index of 0.33 ng·cm−2 and its detection limit is 0.08 mg/L. The optimal conditions for the quantitative determination of zirconium and aluminium were studied. The proposed methods are examined by statistical analysis of the experimental data. The methods are free from interference of most cations and anions. The proposed methods have been used to determine zirconium and aluminium in industrial waste water. Received May 30, 2001; accepted November 2, 2001; published online July 15, 2002  相似文献   

5.
The preconcentration of chromium(III) by solid phase extraction and its determination from aqueous solutions by flame atomic absorption spectrometry (FAAS) is investigated by applying an experimental design. The optimization of the preconcentration variables such as pH of the sample solution, flow rate of the sample solution and concentration of elution solution was carried out using 23 full factorial design. The most important parameter affecting the preconcentration of chromium is the concentration of eluent. In the established experimental conditions, chromium can be determined with a relative standard deviation of 2.0% (N = 7) for a chromium concentration of 100 μg L−1. The detection limit for chromium was 1 μg L−1 (N = 20). The adsorption capacity of Amberlyst 36 is found to be 90.9 mg g−1 for chromium. Effect of other ions on the procedure was also evaluated. The method was validated by the analysis of certified reference materials (tea leaves GBW 07605 and fish tissue IAEA-407). The method was applied to the determination of chromium in waste water, dam water, carrot, parsley and lettuce. Correspondence: Ali Rehber Türker, Department of Chemistry, Faculty of Science and Arts, Gazi University, TR-06500 Ankara, Turkey  相似文献   

6.
CdTe quantum dots (QDs) were modified with thioglycolic acid (TGA) and synthesized in aqueous medium. The optimum fluorescence intensity was found to be at pH 6.24 with a CdTe QDs concentration of 4.96 × 10−7 mol L−1. The quenched fluorescence intensity of CdTe QDs is linearly proportional to V(V) concentration from 10 to 200 ng mL−1 with correlation coefficient R = 0.9985. The limit of detection for V(V) was 2.07 ng mL−1. The proposed method was successfully applied to the analysis of trace amounts of V(V) in water samples with recovery of 96.5–101.8%, and the results were in good agreement with those of electrothermal atomic absorption spectrometry.  相似文献   

7.
The sorption behavior of a newly synthesized silica gel sorbent with thioetheric sites (STS) towards microgram levels of Au(III), Pt(IV) and Pd(II) was studied. Au(III) is quantitatively (>95%) sorbed in the pH region of 1–9. The sorption of Pt(IV) starts at pH 1 and does not exceed 25% in the entire pH region examined. The sorption of Pd(II) starts at pH 7 and reaches 80% at pH 9. The sorption of Au(III) on STS at pH 1 is not affected by milligram amounts of Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) or Co(II). Au(III) is quantitatively eluted with a 5% aqueous solution of thiourea. The adsorption capacity of STS towards Au(III) is 195 mg g−1. The detection limit (DL) of Au(III) (3σ, n = 9) is 25 ng mL−1. The RSD at a level of 10 × DL is about 2%. Solid-phase extraction of trace amounts of Au(III) on the STS sorbent, followed by its flame AAS determination in the eluate was applied to the determination of gold in geological samples. The results obtained for the gold content in the samples were in good agreement with those of the ICP-AES analysis.  相似文献   

8.
We used a carbon paste electrode modified with multi-walled carbon nanotubes as a working electrode and studied the electrochemical behavior of zirconium-alizarin red S complex on it. It was found that the modified electrode exhibited a significant catalytic effect toward the reduction of free alizarin red S and the complex. The second derivative linear scan voltammograms of the complex were recorded by a polarographic analyser from 0 to −1000 mV (vs. SCE), and it was found that the complex can be adsorbed on the surface of the modified electrode, yielding a peak at about −470 mV, corresponding to the reduction of alizarin red S in the complex. The linear range was found to be 2.0 × 10−11–8.0 × 10−7 mol L−1, and the detection limit was 1.0 × 10−11 mol L−1 (S/N = 3) for 3 min accumulation. The procedure was successfully applied to the determination of trace amounts of zirconium in the ore samples. Correspondence: Pei-Hong Deng, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang Hunan 421008, P.R. China  相似文献   

9.
It is shown that chromium(III) acetylacetonate meets the requirements of calibration reference materials: it is homogeneous, soluble in water and organic solvents, and its solutions are stable. Chromium(III) acetylacetonate has been successfully used as a calibration reference material in the analysis of chromium in iron-base alloys. The procedure involves chromium acetylacetonate extraction using methyl isobutyl ketone followed by direct atomic absorption analysis of the organic extract. The detection limit of the procedure is 10 ng g−1. Correspondence: Konstantin Belikov, State Scientific Institution “Institute for Single Crystals” of the National Academy of Sciences of Ukraine, Kharkov, Ukraine  相似文献   

10.
A simple and sensitive cloud point extraction method has been developed for the preconcentration of ultra-trace amounts of gold as a prior step to its determination by electrothermal atomic absorption spectrometry. It is based on the extraction of gold in hydrochloric acid medium using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding a chelating agent. The preconcentration of a 50 mL sample solution was thus enhanced by a factor of 200. The resulting calibration graph was linear in the range of 10–200 ng L−1 with a correlation coefficient of 0.9993. The limit of detection (3s) obtained under optimal conditions was 2.0 ng L−1. The relative standard deviation for 10 replicate determinations at a 100 ng L−1 Au level was 3.6%. The method was applied to the ultra-trace determination of gold in water and copper samples.  相似文献   

11.
Chitosan resin functionalized with 3,4-dihydroxy benzoic acid (CCTS-DHBA resin) was used as a packing material for flow injection (FI) on-line mini-column preconcentration in combination with inductively coupled plasma-atomic emission spectrometry (ICP-AES) for the determination of trace elements such as silver, bismuth, copper, gallium, indium, molybdenum, nickel, uranium, and vanadium in environmental waters. A 5-mL aliquot of sample (pH 5.5) was introduced to the minicolumn for the adsorption/preconcentration of the metal ions, and the collected analytes on the mini-column were eluted with 2 M HNO3, and the eluates was subsequently transported via direct injection to the nebulizer of ICP-AES for quantification. The parameters affecting on the sensitivity, such as sample pH, sample flow rate, eluent concentration, and eluent flow rate, were carefully examined. Alkali and alkaline earth metal ions commonly existing in river water and seawater did not affect the analysis of metals. Under the optimum conditions, the method allowed the determination of metal ions with detection limits of 0.08 ng mL−1 (Ag), 0.9 ng mL−1 (Bi), 0.07 ng mL−1 (Cu), 0.9 ng mL−1 (Ga), 0.9 ng mL−1 (In), 0.08 ng mL−1 (Mo), 0.09 ng mL−1 (Ni), 0.9 ng mL−1 (U), and 0.08 ng mL−1 (V). By using 5 mL of sample solution, the enrichment factor and collection efficiency were 8–12 fold and 96–102%, respectively, whereas the sample throughput was 7 samples/hour. The method was validated by determining metal ions in certified reference material of river water (SLRS-4) and nearshore seawater (CASS-4), and its applicability was further demonstrated to river water and seawater samples.  相似文献   

12.
Summary.  A highly selective, sensitive, and simple catalytic method for the determination of molybdenum in natural and waste waters was developed. It is based on the catalytic effect of Mo(VI) on the oxidation of 2-aminophenol with H2O2. The reaction is monitored spectrophotometrically by tracing the oxidation product at 430 nm after 10 min of mixing the reagents. Addition of 800 μg · cm−3 EDTA conferred high selectivity; however, interfering effects of Au(III), Cr(III), Cr(VI), and Fe(III) had to be eliminated by a reduction and co-precipitation procedure with SnCl2 and Al(OH)3. Mo(VI) shows a linear calibration graph up to 11.0 ng · cm−3; the detection limit, based on the 3S b-criterion, is 0.10 ng · cm−3. The unique selectivity and sensitivity of the new method allowed its direct application to the determination of Mo(VI) in natural and waste waters. Received April 11, 2001. Accepted (revised) June 18, 2001  相似文献   

13.
A novel method for the determination of proteins at nanogram levels was proposed based on the decrease of resonance light scattering (RLS) signal resulting from the interaction of dibromo-o-nitrophenylfluorone (DBONPF)-sodium lauroyl glutamate (SLG) with proteins. At pH 2.97, the decrease RLS intensity was proportional to the concentration of proteins in the range of nanogram levels with 3σ detection limits being 3.4 ng mL−1 for bovine serum albumin (BSA), 1.7 ng mL−1 for human serum albumin (HSA), 4.1 ng mL−1 for γ-globulin (γ-IgG), 4.4 ng mL−1 for egg albumin, 6.2 ng mL−1 for pepsin (Pep) and 3.7 ng mL−1 for α-chymotrypsin (Chy). The method is no protein-to-protein variability, simple, rapid, practical and relatively free from interference from coexisting substance, as well as much more sensitive than most of the reported methods. The proposed method was successfully applied to determine total protein in human serum samples.  相似文献   

14.
Bulk screen-printed electrodes (bSPEs) modified with zirconium phosphate (ZrP) and Meldola blue (MB) and by electrochemical deposition of a Reineckate film (bMBZrPRs-SPEs) have been constructed and used as NADH sensors. Cyclic voltammetric investigation of these bulk electrochemically modified screen-printed electrodes revealed stable catalytic activity in oxidation of the reduced form of the coenzyme nicotinamide adenine dinucleotide (NADH). Flow-injection analysis (FIA) coupled with amperometric detection confirmed the improved stability of the bMBZrPRs-SPEs (10−4 mol L−1 NADH, %RSD = 4.2, n = 90, pH 7.0). Other conditions, for example applied working potential (+50 mV relative to Ag|AgCl), flow rate (0.30 mL min−1) and pH-dependence (range 4.0–10.0) were evaluated and optimized. A glycerol biosensor, prepared by immobilizing glycerol dehydrogenase (GDH) on the working electrode area of a bMBZrPRs-SPE, was also assembled. The biosensor was most stable at pH 8.5 (%RSD = 5.6, n = 70, 0.25 mmol L−1 glycerol). The detection and quantification limits were 2.8 × 10−6 and 9.4 × 10−6 mol L−1, respectively, and the linear working range was between 1.0 × 10−5 and 1.0 × 10−4 mol L−1. To assess the effect of interferences, and recovery by the probe we analyzed samples taken during fermentation of chemically defined grape juice medium and compared the results with those obtained by HPLC.  相似文献   

15.
A new chemiluminescence (CL) method combined with flow injection technique is described for the determination of Cr(III) and total Cr. It is found that a strong CL signal is generated from the reaction of Cr(III), lucigenin and KIO4 in alkaline condition. The determination of total Cr is performed by pre-reduction of Cr(VI) to Cr(III) by using H2SO3. The CL intensity is linearly related to the concentration of Cr in the range 4.0 × 10−10–1.0 × 10−6 g mL−1. The detection limit (3s b) is 1 × 10−10 g mL−1 Cr and the relative standard deviation is 1.9% (5.0 × 10−8 g mL−1 of Cr(III) solution, n = 11). The method was applied to the determination of Cr(III) and total Cr in water samples and compared satisfactorily with the official method.  相似文献   

16.
 Microwave digestion reduction-aeration and pyrolysis combined with cold vapour atomic absorption and cold vapour atomic fluorescence are compared for the determination of total mercury in several biological and environmental matrices. The biological samples were digested in a mixture of HNO3/H2O2, the environmental samples in a mixture of HNO3/HClO4. After reduction with SnCl2, the mercury was collected by two-stage gold amalgamation. After microwave digestion reduction-aeration, detection limits of 1.4 ng g−1 and 0.6 ng g−1 were obtained for cold vapour atomic absorption spectrometry (CVAAS) and cold vapour atomic fluorescence spectrometry (CVAFS), respectively, for 250 mg of environmental samples. For biological samples (500 mg) the detection limits were 0.7 ng g−1 (CVAAS) and 0.4 ng g−1 (CVAFS). After pyrolysis, detection limits of 3.5 ng g−1 and 1.6 ng g−1 for CVAAS and CVAFS, respectively, were obtained for a 10 mg sample. Pyrolysis can only be applied when the organic content of the sample is not too high. Accurate results were obtained for 8 certified reference materials of both environmental and biological origin. In addition, a real sludge sample was analysed. Author for correspondence. E-mail: richard.dams@rug.ac.be Received September 18, 2002; accepted December 3, 2002 Published online May 5, 2003  相似文献   

17.
The electrocatalytical oxidation of hydrazine at low potential using tetracyanoquinodimethanide adsorbed on silica modified with titanium oxide was investigated by cyclic voltammetry and amperometry. The modified electrode was prepared modifying a carbon paste electrode employing lithium tetracyanoquinodimethanide adsorbed onto silica gel modified with titanium oxide. This electrode showed an excellent catalytic activity and stability for hydrazine oxidation. With this modified electrode, the oxidation potential of hydrazine was shifted toward less positive value, presenting a peak current much higher than those observed on a bare GC electrode. The linear response range, sensitivity and detection limit were, respectively, 2 up to 100 μmol l−1, 0.36 μA l μmol−1, and 0.60 μmol l−1. The repeatability of the modified electrode evaluated in term of relative standard deviation was 4.2% for 10 measurements of 100 μmol l−1 hydrazine solution. The number of electrons involved in hydrazine oxidation (4), the heterogenous electron transfer rate constant (1.08 × 103 mol−1 l s−1), and diffusion coefficient (5.9 × 10−6 cm2 s−1) were evaluated with a rotating disk electrode.  相似文献   

18.
The performance of the dispersive liquid–liquid microextraction (DLLME) technique for the determination of eight UV filters and a structurally related personal care species, benzyl salicylate (BzS), in environmental water samples is evaluated. After extraction, analytes were determined by gas chromatography combined with mass spectrometry detection (GC-MS). Parameters potentially affecting the performance of the sample preparation method (sample pH, ionic strength, type and volume of dispersant and extractant solvents) were systematically investigated using both multi- and univariant optimization strategies. Under final working conditions, analytes were extracted from 10 mL water samples by addition of 1 mL of acetone (dispersant) containing 60 μL of chlorobenzene (extractant), without modifying either the pH or the ionic strength of the sample. Limits of quantification (LOQs) between 2 and 14 ng L−1, inter-day variability (evaluated with relative standard deviations, RSDs) from 9% to 14% and good linearity up to concentrations of 10,000 ng L−1 were obtained. Moreover, the efficiency of the extraction was scarcely affected by the type of water sample. With the only exception of 2-ethylhexyl-p-dimethylaminobenzoate (EHPABA), compounds were found in environmental water samples at concentrations between 6 ± 1 ng L−1 and 26 ± 2 ng mL−1.  相似文献   

19.
A sensitive chemiluminescence method for the determination of clindamycin is presented. The method is based on the inhibitory effect of clindamycin on the chemiluminescence reaction between luminol and myoglobin in a flow-injection system. The decrement in chemiluminescence intensity is linear with the logarithm of the clindamycin concentration over the range of 0.1–70.0 ng mL−1 (r 2 = 0.9995), with a detection limit of 0.03 ng mL−1 (3σ). At a flow rate of 2.0 mL min−1, the complete analytical process could be performed within 0.5 min, including sampling and washing, with a relative standard deviation of less than 3.0% (n = 5). The procedure was applied to the determination of clindamycin in human serum and in monitoring the excretion of clindamycin in human urine samples without any pretreatment process. It was found that the excretive clindamycin concentration reached its maximum 3 hours after oral administration. The clindamycin excretive ratio in 9 hours was 10.84% in the body of the volunteer.  相似文献   

20.
An expeditious method for the determination of triclosan (TCS) and methyl triclosan (MTCS) in sludge and sediment samples is presented. Extraction and cleanup steps were integrated in the same process using matrix solid-phase dispersion as sample preparation technique. Effects of different variables on the efficiency and the selectivity of the sample preparation process are discussed. Under final working conditions, samples (0.5 g) were dispersed with diatomaceous earth (1 g) and transferred to a polypropylene syringe containing 2 g of silica impregnated with sulphuric acid (15%, w:w). Analytes were recovered with 10 mL of dichloromethane. After solvent exchange to ethyl acetate, TCS was converted into the tert-butyldimethylsilyl derivative, and the extract was analysed by gas chromatography-mass spectrometry, without any additional cleanup. Obtained recoveries, for sludge and sediment samples spiked at different concentration levels, ranged from 86% to 113%, with associated standard deviations between 2 and 13%. Limits of quantification of the global method were 6 and 7 ng g−1 for MTCS and TCS, respectively. Both compounds were detected in all the processed sludge samples with maximum concentrations of 191 ng g−1 (MTCS) and 2,640 ng g−1 (TCS). The parent bactericide was also found in some sediment samples at concentrations up to 200 ng g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号