首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A well-balanced van Leer-type numerical scheme for the shallow water equations with variable topography is presented. The model involves a nonconservative term, which often makes standard schemes difficult to approximate solutions in certain regions. The construction of our scheme is based on exact solutions in computational form of local Riemann problems. Numerical tests are conducted, where comparisons between this van Leer-type scheme and a Godunov-type scheme are provided. Data for the tests are taken in both the subcritical region as well as supercritical region. Especially, tests for resonant cases where the exact solutions contain coinciding waves are also investigated. All numerical tests show that each of these two methods can give a good accuracy, while the van Leer -type scheme gives a better accuracy than the Godunov-type scheme. Furthermore, it is shown that the van Leer-type scheme is also well-balanced in the sense that it can capture exactly stationary contact discontinuity waves.  相似文献   

2.
This paper is devoted to the testing and comparison of numerical solutions obtained from higher-order accurate finite difference schemes for the two-dimensional Burgers' equation having moderate to severe internal gradients. The fourth-order accurate two-point compact scheme, and the fourth-order accurate Du Fort Frankel scheme are derived. The numerical stability and convergence are presented. The cases of shock waves of severe gradient are solved and checked with the fourth-order accurate Du Fort Frankel scheme solutions. The present study shows that the fourth-order two-point compact scheme is highly stable and efficient in comparison with the fourth-order accurate Du Fort Frankel scheme.  相似文献   

3.
This research explores the Cauchy problem for a class of quasi-linear wave equations with time dependent sources. It can be transformed into the Cauchy problem of hyperbolic integro-differential systems of nonlinear balance laws. We introduce the generalized Glimm scheme in new version and study its stability which is proved by Glimm-type interaction estimates in a dissipativity assumption. The generalized solutions to the perturbed Riemann problems, the building blocks of generalized Glimm scheme, are constructed by Riemann problem method modeled on the source free equations. The global existence for the Lipschitz continuous solutions and weak solutions to the systems is established by the consistency of scheme and the weak convergence of source. Finally, the weak solutions are also the entropy solutions which satisfy the entropy inequality.  相似文献   

4.
1 引言 在渗流、扩散、热传导等领域中经常会遇到求解二维抛物型方程的初边值问题 {(6)u/(6)=a((6)2u/(6)x2+(6)2u/(6)y2), 0<x,y<L,t>0,a>0u(x, y, 0) =φ(x, y), 0 ≤ x, y ≤ L (1)u(0,y,t) =f1(y,t),u(L,y,t) =f2...  相似文献   

5.
In this paper, a high-order exponential (HOE) scheme is developed for the solution of the unsteady one-dimensional convection-diffusion equation. The present scheme uses the fourth-order compact exponential difference formula for the spatial discretization and the (2,2) Padé approximation for the temporal discretization. The proposed scheme achieves fourth-order accuracy in temporal and spatial variables and is unconditionally stable. Numerical experiments are carried out to demonstrate its accuracy and to compare it with analytic solutions and numerical results established by other methods in the literature. The results show that the present scheme gives highly accurate solutions for all test examples and can get excellent solutions for convection dominated problems.  相似文献   

6.
We show how the accuracy of a given finite difference scheme approximating a dissipative nonlinear PDE may be improved. The numerical solutions are decomposed into two parts that may be interpreted as approximating the large and small scales of the true solutions. By enslaving the small scales in terms of the larger ones, we derive a new difference scheme that is, in general, more accurate than the original scheme. The new scheme is also more computationally efficient, provided that the time derivatives of the problem are not too large. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
本文讨论了广义混合非线性Schrodinger方程的周期初值问题,构造了守恒的半离散Fourier拟谱格式,对其近似解进行了先验估计,并证明了格式的收敛性.证明了该方程存在孤立子解,并给出其孤立子解的精确表达式.研究了线性化方程的稳定性问题,即在初值有扰动的情况下,该方程只有振荡解和鞍点.最后,通过数值例子验证了格式的可信性,数值计算表明,本格式时间方向可取大步长且是长时间稳定的,我们还计算了孤立子解,并绘出了在初值有扰动的情况下,相空间的轨线图.  相似文献   

8.
本文讨论了广义混合非线性Schrdinger 方程的周期初值问题,构造了守恒的半离散Fourier 拟谱格式,对其近似解进行了先验估计,并证明了格式的收敛性.证明了该方程存在孤立子解,并给出其孤立子解的精确表达式.研究了线性化方程的稳定性问题,即在初值有扰动的情况下,该方程只有振荡解和鞍点.最后,通过数值例子验证了格式的可信性,数值计算表明,本格式时间方向可取大步长且是长时间稳定的,我们还计算了孤立子解,并绘出了在初值有扰动的情况下,相空间的轨线图.  相似文献   

9.
In this paper, we study the initial-boundary value problem of the usual Rosenau-RLW equation by finite difference method. We design a conservative numerical scheme which preserves the original conservative properties for the equation. The scheme is three-level and linear-implicit. The unique solvability of numerical solutions has been shown. Priori estimate and second order convergence of the finite difference approximate solutions are discussed by discrete energy method. Numerical results demonstrate that the scheme is efficient and accurate.  相似文献   

10.
Explicit numerical finite difference schemes for partial differential equations are well known to be easy to implement but they are particularly problematic for solving equations whose solutions admit shocks, blowups, and discontinuities. Here we present an explicit numerical scheme for solving nonlinear advection–diffusion equations admitting shock solutions that is both easy to implement and stable. The numerical scheme is obtained by considering the continuum limit of a discrete time and space stochastic process for nonlinear advection–diffusion. The stochastic process is well posed and this guarantees the stability of the scheme. Several examples are provided to highlight the importance of the formulation of the stochastic process in obtaining a stable and accurate numerical scheme.  相似文献   

11.
We propose a numerical scheme to approximate the weak solutions of the 10-moment Gaussian closure. The moment Gaussian closure for gas dynamics is governed by a conservative hyperbolic system supplemented by entropy inequalities whose solutions satisfy positiveness of density and tensorial pressure. We consider a Suliciu-type relaxation numerical scheme to approximate the solutions. These methods are proved to satisfy all the expected positiveness properties and all the discrete entropy inequalities. The scheme is illustrated by several numerical experiments.

  相似文献   


12.
Numerical solutions to the Frank-Kamenetskii partial differential equation modelling a thermal explosion in a cylindrical vessel are obtained using the hopscotch scheme. We observe that a nonlinear source term in the equation leads to numerical difficulty and hence adjust the scheme to accommodate such a term. Numerical solutions obtained via MATLAB, MATHEMATICA and the Crank-Nicolson implicit scheme are employed as a means of comparison. To gain insight into the accuracy of the hopscotch scheme the solution is compared to a power series solution obtained via the Lie group method. The numerical solution is also observed to converge to a well-known steady state solution. A linear stability analysis is performed to validate the stability of the results obtained.  相似文献   

13.
ON NUMEROV SCHEME FOR NONLINEAR TWO-POINTS BOUNDARY VALUE PROBLEM   总被引:4,自引:0,他引:4  
1.IntroductionInstudyingsomeproblemsarisinginelectromagnetism,biology)astronomy,bound-arylayerandothertopics,weoftenmeetnonlineartwo--pointsboundaryproblem,i.e.,findingyECo[0,11nC2(0,1)suchthatwhereor,garecertainconstants,andf(x,z)EC'(0,1)xC'(--co,co).Undersomeconditionsonf(x,z),wecanusetheframeworkof[1]toinvestigatetheexistenceanduniquenessofitssolutions.Alsotherearealotofliteratureconcerningitsnumericalsolutio.s[2--'].Inparticular,N..ero.15]proposedafamousfinitedifferenceschemewiththeaccu…  相似文献   

14.
Summary In the well-known Volterra-Lotka model concerning two competing species with diffusion, the densities of the species are governed by a coupled system of reaction diffusion equations. The aim of this paper is to present an iterative scheme for the steady state solutions of a finite difference system which corresponds to the coupled nonlinear boundary value problems. This iterative scheme is based on the method of upper-lower solutions which leads to two monotone sequences from some uncoupled linear systems. It is shown that each of the two sequences converges to a nontrivial solution of the discrete equations. The model under consideration may have one, two or three nonzero solutions and each of these solutions can be computed by a suitable choice of initial iteration. Numerical results are given for these solutions under both the Dirichlet boundary condition and the mixed type boundary condition.  相似文献   

15.
We study a finite difference scheme for a combustion model problem. A projection scheme near the combustion wave, and the standard upwind finite difference scheme away from the combustion wave are applied. Convergence to weak solutions with a combustion wave is proved under the normal Courant-Friedrichs-Lewy condition. Some con-  相似文献   

16.
In this article, numerical solution for the Rosenau-RLW equation in 2D is considered and a conservative Crank–Nicolson finite difference scheme is proposed. Existence of the numerical solutions for the difference scheme has been shown by Browder fixed point theorem. A priori bound and uniqueness as well as conservation of discrete mass and discrete energy for the finite difference solutions are discussed. Unconditional stability and a second-order accuracy on both space and time of the difference scheme are proved. Numerical experiments are given to support our theoretical results.  相似文献   

17.
We study a finite difference scheme for a combustion model problem. A projection scheme near the combustion wave, and the standard upwind finite difference scheme away from the combustion wave are applied. Convergence to weak solutions with a combustion wave is proved under the normal Courant-Friedrichs-Lewy condition. Some conditions on the ignition temperature are given to guarantee the solution containing a strong detonation wave or a weak detonation wave. Convergence to strong detonation wave solutions for the random projection method is also proved.  相似文献   

18.
In this article, we establish the existence and uniqueness of solutions to the coupled reaction–diffusion models using Banach fixed point theorem. The Galerkin finite element method is used for the approximation of solutions, and an a priori error estimate is derived for such approximations. A scheme is proposed by combining the Crank–Nicolson and the predictor–corrector methods for the time discretization. Some numerical examples are considered to illustrate the accuracy and efficiency of the proposed scheme. It is found that the scheme is second‐order convergent. In addition, nonuniform grids are used in some cases to enhance the accuracy of the scheme.  相似文献   

19.
Lagrangean dualization and subgradient optimization techniques are frequently used within the field of computational optimization for finding approximate solutions to large, structured optimization problems. The dual subgradient scheme does not automatically produce primal feasible solutions; there is an abundance of techniques for computing such solutions (via penalty functions, tangential approximation schemes, or the solution of auxiliary primal programs), all of which require a fair amount of computational effort. We consider a subgradient optimization scheme applied to a Lagrangean dual formulation of a convex program, and construct, at minor cost, an ergodic sequence of subproblem solutions which converges to the primal solution set. Numerical experiments performed on a traffic equilibrium assignment problem under road pricing show that the computation of the ergodic sequence results in a considerable improvement in the quality of the primal solutions obtained, compared to those generated in the basic subgradient scheme. Received February 11, 1997 / Revised version received June 19, 1998?Published online June 28, 1999  相似文献   

20.
提出了求解三维抛物型方程的一个高精度显式差分格式.首先,推导了一个特殊节点处一阶偏导数(■u)/(■/t)的一个差分近似表达式,利用待定系数法构造了一个显式差分格式,通过选取适当的参数使格式的截断误差在空间层上达到了四阶精度和在时间层上达到了三阶精度.然后,利用Fourier分析法证明了当r1/6时,差分格式是稳定的.最后,通过数值试验比较了差分格式的解与精确解的区别,结果说明了差分格式的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号