首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the production of near-infrared (NIR)-absorbing organic polymers with an excellent nonlinear optical (NLO) response is vital for various optoelectronic devices and photodynamic therapy, the molecular design and relevant photophysical investigation still remain challenging. In this work, large NLO activity is observed for an NIR-absorbing bithiophene-based polymer with a unique head-to-head linkage in the NIR region. The saturable absorption coefficient and modulation depth of the polymer are determined as ∼−3.5×105 cm GW−1 and ∼32.43%, respectively. Notably, the polymer exhibits an intrinsic nonlinear refraction index up to ∼−9.36 cm2 GW−1, which is six orders of magnitude larger than that of CS2. The maximum molar-mass normalized two-photon absorption cross-section (σ2/M) of this polymer can be up to ∼14 GM at 1200 nm. Femtosecond transient absorption measurements reveal significant spectral overlap between the 2PA and excited state absorption in the 1000–1400 nm wavelength range and an efficient triplet quantum yield of ∼36.7%. The results of this study imply that this NIR-absorbing polymer is promising for relevant applications.  相似文献   

2.
A novel multi-branched chromophore containing 2,3-diarylquinoxalinyl units as the electron-acceptors had been synthesized and its nonlinear optical properties were characterized in the femtosecond and nanosecond regime. The experimental results show that the studied fluorophore possesses strong and wide-dispersed two-photon absorption in near infrared (NIR) region. It is demonstrated that the incorporation of 2,3-disubstituted quinoxaline moieties as a part of π-conjugation in a dye molecule could be a useful approach toward large molecular two-photon absoptivities within the studied spectral region. Effective optical-power-attenuation behaviors in the nanosecond time domain of this compound were also investigated and the results indicate that such dye molecule can be a potential material as a broadband and quick-responsive optical limiter especially when against those laser lights with longer pulses.  相似文献   

3.
A new class of near‐infrared (NIR)‐absorptive (>900 nm) photosensitizer based on a phenothiazinium scaffold is reported. The stable solid compound, o‐DAP, the oxidative form of 3,7‐bis(4‐methylaminophenyl)‐10H‐phenothiazine, can generate reactive oxygen species (ROS, singlet oxygen and superoxide) under appropriate irradiation conditions. After biologically evaluating the intracellular uptake, localization, and phototoxicity of this compound, it was concluded that o‐DAP is photostable and a potential selective photodynamic therapy (PDT) agent under either NIR or white light irradiation because its photodamage is more efficient in cancer cells than in normal cells and is without significant dark toxicity. This is very rare for photosensitizers in PDT applications.  相似文献   

4.
We introduce nitrile imine‐mediated tetrazole–ene cycloadditions (NITEC) in the presence of upconversion nanoparticles (UCNPs) as a powerful covalent coupling tool. When a pyrene aryl tetrazole derivative (λabs, max=346 nm) and UCNPs are irradiated with near‐infrared light at 974 nm, rapid conversion of the tetrazole into a reactive nitrile imine occurs. In the presence of an electron‐deficient double bond, quantitative conversion into a pyrazoline cycloadduct is observed under ambient conditions. The combination of NITEC and UCNP technology is used for small‐molecule cycloadditions, polymer end‐group modification, and the formation of block copolymers from functional macromolecular precursors, constituting the first example of a NIR‐induced cycloaddition. To show the potential for in vivo applications, through‐tissue experiments with a biologically relevant biotin species were carried out. Quantitative cycloadditions and retention of the biological activity of the biotin units are possible at 974 nm irradiation.  相似文献   

5.
We developed nanosized, reduced graphene oxide (nano-rGO) sheets with high near-infrared (NIR) light absorbance and biocompatibility for potential photothermal therapy. The single-layered nano-rGO sheets were ~20 nm in average lateral dimension, functionalized noncovalently by amphiphilic PEGylated polymer chains to render stability in biological solutions and exhibited 6-fold higher NIR absorption than nonreduced, covalently PEGylated nano-GO. Attaching a targeting peptide bearing the Arg-Gly-Asp (RGD) motif to nano-rGO afforded selective cellular uptake in U87MG cancer cells and highly effective photoablation of cells in vitro. In the absence of any NIR irradiation, nano-rGO exhibited little toxicity in vitro at concentrations well above the doses needed for photothermal heating. This work established nano-rGO as a novel photothermal agent due to its small size, high photothermal efficiency, and low cost as compared to other NIR photothermal agents including gold nanomaterials and carbon nanotubes.  相似文献   

6.
《Mendeleev Communications》2021,31(4):456-458
The thin MAPbI3 and MA0.15FA0.75Cs0.1PbI3 perovskite films have strong nonlinear absorption with coefficients of 443 ± 20 and 830 ± 50 cm GW–1, respectively, due to two-photon absorption at 1064 nm. The photochemical degradation of perovskite films was observed upon irradiation with femtosecond pulses at 532 nm, and the depth of photodegradation decreased in perovskite films protected with a PMMA polymer layer.  相似文献   

7.
《中国化学快报》2023,34(11):108402
Identification of lymph nodes (LNs) is critical for studies of the structure, the role in disease development, and the efficacy of disease treatment. Carbonized polymer dots (CPDs) are expected to be potential LNs-targeted imaging agents due to their excellent properties with special structure, better photoluminescence (PL) and great biocompatibility. Herein, a red/near infrared (NIR) emission CPDs (RCPDs) with one and two-photon bioimaging based on citric acid (CA) and benzoylurea (BU) are prepared. Notably, the RCPDs are capable of targeting LNs for imaging. Lymphocyte homing has been demonstrated to be the cellular mechanism of RCPDs target LNs imaging. This work has developed a new nanomaterial for targeted imaging of LNs, while the biological applications of CPDs have been expanded and deepened.  相似文献   

8.
本文研究了金纳米棒的局域表面等离子体共振效应在双光子聚合过程中的作用,即当激发光与金纳米棒表面等离子体共振波长相匹配时,会在金纳米棒表面产生很强的局域电磁场,从而引发双光子聚合。通过采用与金纳米棒表面等离子体共振波长相同的飞秒激光,在低于光刻胶聚合阈值的功率下照射含有金纳米棒的光刻胶,制备聚合物包覆金纳米棒的纳米复合材料。透射电子显微镜结果表明,当飞秒激光功率为0.6 W、光斑直径为1.6 cm、照射时间为0.3 s时,金纳米棒表面成功聚合上厚度为5 nm左右的聚合物。本研究在制备聚合物/金属纳米粒子方面提供了一种简单可行的方法,有望在纳米光子学、纳米传感器等新兴领域得到应用。  相似文献   

9.
Optically tunable field-effect transistors (FETs) with near infra-red (NIR) light show promising applications in various areas. Now, arylazopyrazole groups are incorporated in the side chains of a semiconducting donor–acceptor (D-A) polymer. The cis–trans interconversion of the arylazopyrazole can be controlled by 980 nm and 808 nm NIR light irradiation, by utilizing NaYF4:Yb,Tm upconversion nanoparticles and the photothermal effect of conjugated D-A polymers, respectively. This reversible transformation affects the interchain packing of the polymer thin film, which in turn reversibly tunes the semiconducting properties of the FETs by the successive 980 nm and 808 nm light irradiation. The resultant FETs display fast response to NIR light, good resistance to photofatigue, and stability in storage for up to 120 days. These unique features will be useful in future memory and bioelectronic wearable devices.  相似文献   

10.
We investigated the structures induced by an irradiation of a near‐infrared (NIR) femtosecond laser pulse in dye‐doped polymeric materials {poly(methyl methacrylate) (PMMA), thermoplastic epoxy resin (Epoxy), and a block copolymer of methyl methacrylate and ethyl acrylate‐butyl acrylate [p(MMA/EA‐BA) block copolymer]}. Dyes used were classified into two types—type 1 with absorption at 400 nm and type 2 with no absorption at 400 nm. The 400‐nm wavelength corresponds to the two‐photon absorption region by the irradiated NIR laser pulse at 800 nm. Type 1 dye‐doped PMMA and p(MMA/EA‐BA) block copolymer showed a peculiar dye additive effect for the structures induced by the line irradiation of a NIR femtosecond laser pulse. On the contrary, dye‐doped Epoxy did not exhibit a dye additive effect. The different results among PMMA, p(MMA/EA‐BA) block copolymer, and Epoxy matrix polymers are supposed to be related to the difference of electron‐acceptor properties. The mechanism of this type 1 dye‐additive‐effect phenomenon for PMMA and p(MMA/EA‐BA) block copolymer is discussed on the basis of two‐photon absorption of type 1 dye at 400 nm by the irradiation of a femtosecond laser pulse with 800 nm wavelength and the dissipation of the absorbed energy to the polymer matrix among various transition processes. Dyes with a low‐fluorescence quantum yield favored the formation of thicker grating structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2800–2806, 2002  相似文献   

11.
The experiments described here demonstrate the use of two-photon excitation (TPE) to sensitize nitric oxide (NO) release from a dye-derivatized iron/sulfur/nitrosyl cluster Fe2(mu-RS)2(NO)4 (Fluor-RSE, RS = 2-thioethyl ester of fluorescein) with near-infrared (NIR) light in the form of femtosecond pulses from a Ti:sapphire laser. TPE at 800 nm leads both to weak fluorescence from the organic chromophore at lambda(max) = 532 nm and to NO labilization from the cluster. Since the emission from the reference compound Fluor-Et (the ethyl ester of fluorescein) under identical conditions (50/50 CH3CN/phosphate buffer (1 mM) at pH 7.4) is considerably more intense, the weaker emission from Fluor-RSE and the NO generation indicate that the fluorescein excited states initially formed by TPE are largely quenched by energy transfer to the cluster core. The two-photon absorption (TPA) cross section of Fluor-RSE at 800 nm was determined to be delta = 63 +/- 7 GM via the TPA photoluminescence technique. This can be compared to the TPA cross section of 36 GM reported for fluorescein dye in pH 11 aqueous solution and of 32 +/- 3 GM for Fluor-Et measured under conditions comparable to those used for Fluor-RSE. Pulse intensity dependence studies showed that the quantity of NO released from the latter as the result of NIR photoexcitation follows a quadratic relationship to excitation intensity, consistent with the expectation for a TPE process. These studies demonstrate the potential utility of a two-photon antenna for sensitization of the photochemical release of an active agent (in this case, NO) from a photoactive pro-drug.  相似文献   

12.
黄池宝  樊江莉  彭孝军  孙世国 《化学进展》2007,19(11):1806-1812
双光子荧光显微成像兼具诸如近红外激发、暗场成像、避免荧光漂白和光致毒、定靶激发、高横向分辨率与纵向分辨率、降低生物组织吸光系数及降低组织自发荧光干扰等特点而显著地优于单光子荧光显微成像,为生命科学研究提供了更为锐利的工具。而用于像离子的含量及其对生理的影响、离子参与的生理活动机制、离子与分子的作用、特定分子的分布及其相互作用等方面研究的双光子荧光探针,是实现成像的关键。双光子荧光探针的研究旨在促进双光子荧光显微镜应用的发展,促进生命科学、医学科学的快速发展,同时也带动双光子荧光探针所隶属的化学这一学科的发展。因此对双光子荧光探针的研究具有重要的理论和实践意义。该文综述了双光子荧光显微成像的优点、双光子荧光探针设计的原理及双光子荧光探针在离子分析方面的应用,并展望了这类荧光探针的发展趋势与应用前景。  相似文献   

13.
The effects of NIR (near-infrared radiation 700-2,000 nm) on bovine erythrocytes in plasma was studied as a continuation of earlier studies. Cell shape was observed and the changes of ratio of hemolysis and electrokinetic potential measured as a function of irradiation time. After 10 min of irradiation, the shape of erythrocyte cells was mainly echinocytic. When these cells were incubated at 311 K for 24 h they regained their initial shape, but fresh erythrocytes that were irradiated for 30 min and aged in vitro did not. These phenomena are due to: (1) the absorption of NIR excitation by hemoglobin; the primary photochemical process being the photo-dissociation of oxyhemoglobin to deoxyhemoglobin. Resulting shape and ratio of hemolysis, structural changes and oxidative stress follow higher deoxyhemoglobin concentration. (2) The absorption of the NIR excitation by proteins, water and lipids. After NIR absorption the membrane surface dehydrates, leading to enhanced protonation and dissociation of hydrogen-bonded complexes. This in turn leads to a change in electrokinetic potential.  相似文献   

14.
The effect of triplet sensitizers, benzophenone and anthraquinone and metal acetylacetonates [Co(II, III), Cu, Sn, and Ni] on the photodegradation of polyurethane was examined. Ultravioletvisible (UV-V) absorption spectra, gel formation, and luminescence emission of the polymer before and after irradiation were measured. Changes in UV-V absorption of the polymer and the formation of an insoluble fraction in the polymer were accelerated in the presence of the triplet sensitizers, and (Co(II, III)), Cu, and Sn acetylacetonates. Unirradiated polyurethane was excited by irradiation at 290 and 346 nm, and emitted light at 310 and 420 nm. After 1/2 hr irradiation emission of luminescence was observed at 430 nm, excitation at 290 and 346 nm; after 2hr irradiation at 530 nm, excitation at 420 nm was observed. The results suggest that photodegradation of the polyurethane proceeds via excited triplet states forming excimer between the polymers at the initial stage and exciplexes between the polymer and degradation products or intermediates after a certain irradiation.  相似文献   

15.
Near-infrared light(NIR)triggered transdermal drug delivery systems are of great interest due to their on-demand drug release,which enable to enhance drug treatment efficiency as well as reduce side effect.Herein,a NIR-triggered microneedle(MN)patch array has been fabricated through depositing the photothermal conversion agent and anti-diabetic drug-loaded polymer vesicles with upper critical solution temperature(UCST)into dissolvable polymer matrix.The UCST-type polymer has a clearing point temperature of 41℃ and the drug-loaded polymer vesicles present excellent NIR-triggered and temperature responsive drug release behavior in vitro due to the disassociation of polymer vesicles upon NIR irradiation.After applying MNs to diabetic rats,significant hypoglycemic effect is achieved upon interval NIR irradiation and the blood glucose concentration can decrease to normal state for several hours,which enables to achieve the goal of on-demand drug release.This work suggests that the NIR-triggered MN drug release device has a potential application in the treatment of diabetes,especially for those requiring an active drug release manner.  相似文献   

16.
Optically tunable field‐effect transistors (FETs) with near infra‐red (NIR) light show promising applications in various areas. Now, arylazopyrazole groups are incorporated in the side chains of a semiconducting donor–acceptor (D‐A) polymer. The cis–trans interconversion of the arylazopyrazole can be controlled by 980 nm and 808 nm NIR light irradiation, by utilizing NaYF4:Yb,Tm upconversion nanoparticles and the photothermal effect of conjugated D‐A polymers, respectively. This reversible transformation affects the interchain packing of the polymer thin film, which in turn reversibly tunes the semiconducting properties of the FETs by the successive 980 nm and 808 nm light irradiation. The resultant FETs display fast response to NIR light, good resistance to photofatigue, and stability in storage for up to 120 days. These unique features will be useful in future memory and bioelectronic wearable devices.  相似文献   

17.
Biodegradable poly (lactide-co-glycolide) (PLGA) copolymers have been used for many years for biomedical applications such as soluble sutures, orthopaedic implants and more recently as potential tissue scaffold materials. The rate at which the copolymers degrade can be manipulated from a period of days to months by changing the lactide/glycolic acid ratio. Degradation of PLGA copolymers occurs by hydrolysis of the ester bonds in the polymer backbone. The hydrolysis reaction is autocatalytic and is accelerated by the build up of degradation products in the bulk of the material. As a consequence, material degradation is expected to be non-uniform through the specimen thickness with the material at the centre degrading at a faster rate than at the surface. Despite many studies of PLGA degradation, information on this local variance is sparse as the techniques used to track the process are usually bulk measures. In this study, two new approaches for monitoring degradation have been developed that enable local measurements of degradation to be made throughout the specimen over an extended period of time. Chemical and mechanical variations in the structure of the polymer have been mapped using attenuated total reflectance infrared spectroscopy (ATR-FTIR) and nanoindentation. These have produced comparable results and show that the degradation rate at the centre of the specimens is almost an order of magnitude higher than at the surface.  相似文献   

18.
A new photochromic diarylethene (1a) has been prepared. Both its photochromic behavior and nonlinear optical properties are investigated. 1a shows excellent ring-opening (λmax = 386 nm) and ring-closing (λmax = 652 nm) photoisomerization with UV-Vis light irradiation. With 800 nm femtosecond pulsed laser irradiation, 1a shows two-photon-induced photoisomerization, and a two-photon absorption cross-section (σ = 423×1050 cm4·s per photon) is obtained by using two-photon induced fluorescence method. The applications of two-photon absorption of 1a to holographic recording has been also investigated. A two-photon induced micro-pattern is recorded on the diarylethene 1a-PMMA film with an femtosecond laser of 800 nm, 100 fs, 1 kHz, 50 mW.  相似文献   

19.
Gold nanorods were attached to the gene of enhanced green fluorescence protein (EGFP) for the remote control of gene expression in living cells. The UV-vis spectroscopy, electrophoresis, and transmission electron microscopy (TEM) were used to study the optical and structural properties of the EGFP DNA and gold nanorod (EGFP-GNR) conjugates before and after femto-second near-infrared (NIR) laser irradiation. Upon NIR irradiation, the gold nanorods of EGFP-GNR conjugates underwent shape transformation that resulted in the release of EGFP DNA. When EGFP-GNR conjugates were delivered to cultured HeLa cells, induced GFP expression was specifically observed in cells that were locally exposed to NIR irradiation. Our results demonstrate the feasibility of using gold nanorods and NIR irradiation as means of remote control of gene expression in specific cells. This approach has potential applications in biological and medical studies.  相似文献   

20.
A series of star-shaped octupolar triazatruxenes (TATs, 1-6) with intramolecular "push-pull" structure were synthesized and their photophysical properties have been systematically investigated. These chromophores showed obvious solvatochromic effect, i.e., significant bathochromic shift of the emission spectra and larger Stokes shifts were observed in more polar solvents mainly due to photoinduced intramolecular charge transfer (ICT). The two-photon absorption (2PA) cross-section values were determined by two-photon excited fluorescence (2PEF) measurements in toluene and THF. These chromophores exhibited large two-photon absorption cross-sections ranging from 280 to 1620 GM in the near-infrared (NIR) region. Compound 6 showed the largest 2PA action cross-section (σ(2)Φ) of 564 GM and could be a potential two-photon fluorescent (2PF) probe. In addition, compounds 1-6 all displayed good thermal stability and photostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号