首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaseous CePO2 has been identified by Knudsen effusion mass spectrometry during vaporization of CeO2 and magnesium diphosphate from tungsten double, two‐temperature effusion cell. Structure and molecular parameters of gaseous cerium phosphate under study were determined using quantum chemical calculations. On the basis of equilibrium constants measured for gas‐phase reaction, standard formation enthalpy of CePO2 was determined to be ?508 ± 41 kJ ? mol?1 at the temperature 298 K.  相似文献   

2.
The gaseous oxides FeO and FeO2 were identified by mass spectrometry as components of the effusion beam from a cell containing, initially, solid Fe2O3. From studies of gaseous equilibria involving these species, the dissociation energiesD00(FeO) = 96.8 ± 3 kcal (4.20 ± 0.13 eV) andD00(FeO2) = 199.0 ± 5 kcal (8.64 ± 0.22 eV) were derived. The ionization potential of FeO was found to be 8.71 ± 0.10 eV, leading toD00(Fe+-O) = 78.2 ± 4.6 kcal (3.39 ± 0.20 eV).  相似文献   

3.
Knudsen effusion studies of the sublimation of polycrystalline SnS, prepared by annealing and chemical vapor transport, have been performed employing vacuum micro-balance techniques in the temperature range 733–944 K and at pressures ranging from about 6 × 10?3 to 11 Pa.The third-law heats of sublimation and second-law entropy of reaction SnS(s) = SnS(g) were determined to be ΔH0298 = 220.4 ± 3.0 kJ mole? and ΔS0298 = 162.4 ± 4.5 J K?1 mole?1. From these data the standard heat of formation and absolute entropy of SnS(s) were calculated to be ?102.9 ± 4.0 kJ mole?1 and 79.9 ± 6.0 J K?1, respectively.  相似文献   

4.
On the Thermodynamics of Vaporization and the Enthalpies of Formation of CaSe, SrSe and BaSe The congruent vaporization of the solid compounds CaSe, SrSe and BaSe of stoichiometric composition was studied over the temperature ranges 1832?2138 K, 1862?2122 K and 1860?2158 K, respectively, by the Knudsen effusion weight-loss method. Using enthalpy and entropy data from the literature for gaseous M, MSe, Se2 and Se (M = Ca, Sr, Ba) and estimated data for the standard entropies and enthalpy functions of solid MSe, it can be shown that within the given temperature ranges CaSe and SrSe vaporize predominatly to the atomic species, while in case of BaSe the mode of vaporization to the atoms and to the molecular species BaSe are of about equal importance. The Se2-content of the gas phase is very small in all cases. The following second and third law enthalpies and entropies (indices II and III respectively) were derived for the vaporization to the gaseous elements: see “Inhaltsübersicht”. The following standard enthalpies of formation of MSe(s) were derived from the third law enthalpies (in kJ · mol?1): CaSe: ?445 ± 44; SrSe: ?451 ± 42; BaSe: ?467 ± 44.  相似文献   

5.
In the present work, the stability of gaseous manganese-containing salts was proved by the high-temperature mass spectrometric method. New previously unreported species were found, MnPO3 and MnPO2. On the basis of equilibrium constants measured for gas-phase reactions the standard formation enthalpies for MnPO3 and MnPO2 were determined as ?602.0 ± 10.0 kJ/mole and ?299.0 ± 11.5 kJ/mole, respectively, and the standard atomization enthalpies as 1950 ± 14 kJ/mole and 1397 ± 14 kJ/mole, respectively.  相似文献   

6.
Knudsen effusion studies of the sublimation of polycrystalline SnSe and SnSe2, prepared by annealing and chemical vapor transport reactions, respectively, have been carried out using vacuum microbalance techniques in the temperature ranges 736–967 K and 608–760 K, respectively. From experimental mass-loss data for the sublimation reaction SnSe(s) = SnSe(g), the recommended values for the heat of formation and absolute entropy of SnSe(s) were calculated to be ΔH°298,f = ?86.4 ± 9.9 kJ · mol?1 and S°298 = 89.0 ± 7.1 J · K?1 · mol?1. From mass-loss data for the decomposition reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm SnSe}_{\rm 2} ({\rm s)} = {\rm SnSe(s)} + \frac{1}{{\rm x}}{\rm Se}_{\rm x} ({\rm g) (x} = 2 - 8) $\end{document}, the recommended values for the heat of formation and absolute entropy of SnSe2(s) were determined to be ΔH°298,f = ?118.1 ± 15.1 kJ · mol?1 and S°298 = 111.8 ± 11.8 J · K?1 mol?1.  相似文献   

7.
The gas-phase reaction of the NO3 radical with NO2 was investigated, using a flash photolysis-visible absorption technique, over the total pressure range 25–400 Torr of nitrogen or oxygen diluent at 298 ± 2 K. The absolute rate constants determined (in units of 10?13 cm3 molecule?1 s?1) at 25, 100, and 400 Torr total pressure were, respectively, (4.0 ± 0.5), (7.0 ± 0.7), and (10 ± 2) for M = N2 and (4.5 ± 0.5), (8.0 ± 0.4), and (8.8 ± 2.0) for M = O2. These data show that the third-body efficiencies of N2 and O2 are identical, within the error limits, and that previous evaluations for M = N2 are applicable to the atmosphere. In addition, upper limits were determined for the rate constants of the reactions of the NO3 radical with methanol, ethanol, and propan-2-ol of ?6 × 10?16, ?9 × 10?16, and ?2.3 × 10?15 cm3 molecule?1 s?1, respectively, at 298 ± 2 K.  相似文献   

8.
The infrared spectra of gaseous and solid tertiary-butylphosphine, [(CH3)3CPH2], have been recorded from 50 cm?1 to 3500 cm?1. The Raman spectra of gaseous, liquid and solid (CH3)3CPH2 have been recorded from 10 to 3500 cm?1. A vibrational assignment of the 42 normal modes has been made. A harmonic approximation of the methyl torsional barrier from observed transitions in the solid state gave a result of 4.22 kcal mol?1 and 3.81 kcal mol?1 in the gaseous state. Hot band transitions for the phosphino torsional mode have been observed. The potential function for internal rotation about the C-P bond has been calculated. The two potential constants were determined to be: V3 = 2.79 ± 0.01 kcal mol?1 and V6 = 0.07 ± 0.01 kcal mol?1.  相似文献   

9.
[RuCl2(NCCH3)2(cod)], an alternative starting material to [RuCl2(cod)] n for the preparation of ruthenium(II) complexes, has been prepared from the polymer compound and isolated in yields up to 87% using a new work-up procedure. The compound has been obtained as a yellow solid without water of crystallization. The complexes [RuCl2(NCR)2(cod)] spontaneously transform into dimers [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph). 1H NMR kinetic experiments for these transformations evidenced first-order behavior. [RuCl2(NCPh)2(cod)] dimerizes slower by a factor of ten than [RuCl2(NCCH3)2(cod)]. The following activation parameters, ΔH #?=?114?±?3?kJ?mol?1 and ΔS #?=?66?±?9?J?K?1?mol?1 for R?=?CH3CN (ΔG #?=?94?±?5?kJ?mol?1, 298.15?K) and ΔH #?=?122?±?2?kJ?mol?1 and ΔS #?=?75?±?6?J?K?1?mol?1 for R?=?Ph (ΔG #?=?100?±?4?kJ?mol?1, 298.15?K), have been calculated from the first-order rate constants in the temperature range 294–323?K. The kinetic parameters are in agreement with a two-step mechanism with dissociation of acetonitrile as the rate-determining step. The molecular structures of [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph) have been determined by X-ray diffraction.  相似文献   

10.
The standard molar enthalpies of formation of the crystalline lanthanum(III) chelate complexes with pentane-2,4-dione (acetylacetone, Hacac) and 1-phenylbutane-1,3-dione (benzoylacetone, Hbzac) were determined by the solution calorimetry method. The following values ofΔH f(s) 0 (kJ mol?1) were obtained: La(acac)3', ?1916.2±7.0; La(bzac)3 · 2H2O, ?2099.1 ±9.7. The enthalpies of the hypothetical complex dissociation reactions in the gaseous phase: $$LaL_{3(g)} = La_{(g)} + 3L_{(g)} and LaL_{3(g)} = La_{(g)}^{ + 3} + 3L_{(g)}^ - $$ were calculated as a measure of the mean bond dissociation energy, (La-O), and the mean coordinate bond dissociation energy, CB>(La-O), respectively.  相似文献   

11.
The vaporization of pure RbCl, GdCl3, and RbCl‐GdCl3 samples of different phase compositions was investigated in the temperature range between 666 K and 982 K by use of the Knudsen effusion mass spectrometry. The gaseous species RbCl, Rb2Cl2, GdCl3, and RbGdCl4 were identified in the equilibrium vapours and their partial pressures were determined. The enthalpy of dissociation of RbGdCl4(g), ΔdissH°(859 K) = 263.1 ± 7.7 kJ mol—1, was evaluated by second law treatment of the equilibrium partial pressures. The thermodynamic activities of RbCl and GdCl3 were obtained at 800 K in the two‐phase fields {Rb3GdCl6(s) + liquid} and {RbGd2Cl7(s) + GdCl3(s)}. The Gibbs free energies of formation of the pseudo‐binary phases Rb3GdCl6(s), ΔfG°(800 K) = —75.1 ± 2.5 kJ mol—1 and RbGd2Cl7(s), ΔfG°(800 K) = —40.6 ± 1.2 kJ mol—1, were evaluated from the thermodynamic activities of the components. The results are compared with the available literature data.  相似文献   

12.
Complex formation of humic acids (HA)n with La3+ and Eu3+ was studied. Commercial (HA)n was purified and characterized. The stability constants were determined at several pH values and 0.2?M NaClO4 ionic strength by the Shubert??s method of radiochemical ionic exchange. The slopes of the lines $ \log ((\lambda_{0} /\lambda ) - 1) = \log \beta_{\text{M,j(HA)n}}^{\exp } + {\text{j}} * \log \left[ { ( {\text{HA)}}_{\text{n}} } \right] $ were dependent on the [(HA)n]. The values of log $ \beta_{\text{M,j(HA)n}}^{\exp } $ for j?=?1 were the following: 6.29?±?0.04 (pH 4.9?±?0.4) and 7.61?±?0.03 (pH 5.9?±?0.1) for lanthanum and 7.31?±?0.01 (pH 5.9?±?0.2) for europium. Log $ \beta_{\text{M,j(HA)n}}^{\exp } $ was determined as well for higher values of the j parameter and these values were: 12.2?±?0.1 (j?=?2, pH 7.7?±?0.2), 15.6?±?0.2 (j?=?3, pH 4.9?±?0.4) and 16.05?±?0.07 (j?=?3, pH 5.9?±?0.1), for lanthanum and 13.18?±?0.03 (j?=?2, pH 5.9?±?0.1) for europium. A discussion is presented about the complex formation regarding pH and [(HA)n].  相似文献   

13.
The volumes of activation in cm3 mol?1 for the aquation of Co(CN)5X3? were determined at 40°C and μ = 1 M (NaClO4) to be + 7.8 ± 0.5 for X = Cl?, + 7.6 ± 0.6 for X = Br?, + 14.0 ± 0.7 for X = I?, and + 16.8 ± 0.5 for X = N3? (0.1 M HClO4), respectively. The volumes of activation for the aquation of Co(CN)5Cl3? at μ = 0.1 M are + 10.0 ± 0.6 cm3 mol?1 and ± 9.1 ± 0.3 cm3 mol?1 at 40°C and 25°C, respectively. The corresponding values for the anation of Co(CN)5OH22? (at 40°C) and μ = 1 M by Br?, I?, and NCS? are +8.4 ± 1.0, +9.4 ± 1.6, and +8.2 ± 0.9 cm3 mol?1, respectively. These data are discussed in terms of a dissociative (D) mechanism.  相似文献   

14.
The standard molar enthalpy of formation of crystalline dialkyldithiocarbamate chelates, [Pd(S2CNR2)2], with R=CH3 and i-C3H7, was determined through reaction-solution calorimetry in 1,2-dichloroethane, at 298 K. Using the standard molar enthalpies of formation of the gaseous chelates, the homolytic (526±18 and 666±10) and heterolytic (2693±18 and 2957±10 kJ mol-1) mean enthalpies of palladium-sulphur bond dissociation were calculated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The silicon–tin chemical bond has been investigated by a study of the SiSn diatomic molecule and a number of new polyatomic SixSny molecules. These species, formed in the vapor produced from silicon–tin mixtures at high temperature, were experimentally studied by using a Knudsen effusion mass spectrometric technique. The heteronuclear diatomic SiSn, together with the triatomic Si2Sn and SiSn2 and tetratomic Si3Sn, Si2Sn2, and SiSn3 species, were identified in the vapor and studied in the overall temperature range 1474–1944 K. The atomization energy of all the above molecules was determined for the first time (values in kJ mol?1): 233.0±7.8 (SiSn), 625.6±11.6 (Si2Sn), 550.2±10.7 (SiSn2), 1046.1±19.9 (Si3Sn), 955.2±26.8 (Si2Sn2), and 860.2±19.0 (SiSn3). In addition, a computational study of the ground and low‐lying excited electronic states of the newly identified molecules has been made. These electronic‐structure calculations were performed at the DFT‐B3LYP/cc‐pVTZ and CCSD(T)/cc‐pVTZ levels, and allowed the estimation of reliable molecular parameters and hence the thermal functions of the species under study. Computed atomization energies were also derived by taking into account spin–orbit corrections and extrapolation to the complete basis‐set limit. A comparison between experimental and theoretical results is presented. Revised values of (716.5±16) kJ mol?1 (Si3) and (440±20) kJ mol?1 (Sn3) are also proposed for the atomization energies of the Si3 and Sn3 molecules.  相似文献   

16.
A novel-pulsed electrolyte cathode atmospheric pressure discharge (pulsed-ECAD) plasma source driven by an alternating current (AC) power supply coupled with a high-voltage diode was generated under normal atmospheric pressure between a metal electrode and a small-sized flowing liquid cathode. The spatial distributions of the excitation, vibrational, and rotational plasma temperatures of the pulsed-ECAD were investigated. The electron excitation temperature of H Texc(H), vibrational temperature of N2 Tvib(N2), and rotational temperature of OH Trot(OH) were from 4900?±?36 to 6800?±?108 K, from 4600?±?86 to 5800?±?100 K, and from 1050?±?20 to 1140?±?10 K, respectively. The temperature characteristics of the dc solution cathode glow discharge (dc-SCGD) were also studied for the comparison with the pulsed-ECAD. The effects of operating parameters, including the discharge voltage and discharge frequency, on the plasma temperatures were investigated. The electron number densities determined in the discharge system and dc-SCGD were 3.8–18.9?×?1014?cm–3 and 2.6?×?1014 to 17.2?×?1014?cm–3, respectively.  相似文献   

17.
Heterogeneous reactions of gaseous methanesulfonic acid (MSA) with calcium carbonate (CaCO3) and kaolinite particles at room temperature were investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatography (IC). Methanesulfonate (MS?) was identified as the product in the condensed phase, in accordance with the product of the reaction of gaseous MSA with NaCl and sea salt particles. When the concentration of gaseous MSA was 1.34 × 1013 molecules cm?3, the uptake coefficient was (1.21 ± 0.06) × 10?8 (1σ) for the reaction of gaseous MSA with CaCO3 and (4.10 ± 0.65) × 10?10 (1σ) for the reaction with kaolinite. Both uptake coefficients were significantly smaller than those of the reactions of gaseous MSA with NaCl and sea salt particles.  相似文献   

18.
Molten potassium tetrachlorogallate and potassium tetraiodogallate were studied in terms of halogenoacidity, based on X? ion-exchange. Titration of KX solution with GaX3 were achieved and characterized by the shift of cathodic voltammetric curves. Autodissociation constants Ki,X/mol2 kg?1 were determined: ?log Ki,Cl=4.25±0.05 and ?log Ki,I=2.6±0.05, as well as the solubility values of KX: 0.41±0.02 and 0.80±0.02 mol kg?1 for KCl and KI respectively.  相似文献   

19.
Reactions of mercury(II) with iminodiacetic (H2Ida), 2-hydroxyethyliminodiacetic (H2Heida), and nitrilotriacetic acids (H3Nta) were studied by spectrophotometry and pH potentiometry. The resulting complexes included [HgIda], [Hg(OH)Ida]?, [HgIda2]2?, [HgHeida], [Hg(OH)Heida]?, [Hg(Heida)2]2?, [HgNta]?, [HgNta2]4?, [Hg(Ida)Heida]2?, [Hg(Ida)Nta]3?, and [Hg(Heida)Nta]3?. The logarithms of their stability constants calculated for I = 0.1 (NaClO4) and T = 20 ± 2°C were 11.14 ± 0.07, 20.33 ± 0.08, 19.40 ± 0.10, 11.42 ± 0.04, 19.68 ± 0.11, 18.48 ± 0.09, 13.42 ± 0.05, 20.80 ± 0.08, 19.05 ± 0.06, 20.64 ± 0.11, and 20.53 ± 0.16, respectively. The experimental data were analyzed in terms of the mathematical models that predict the existence of a wide spectrum of complex species in solution and allow one to consider only those species that are sufficient for accurate reproduction of the observed pattern.  相似文献   

20.
The kinetics of the reaction between the [Rh(NH3)5H2O]3+ ion and H3PO4 was studied by 31P NMR at 323?C343 K (E a = 100.9 ± 0.3 kJ/mol, lnA = 35.7 ± 0.1). An empirical dependence of the 31P chemical shift on the equilibrium pH was found. The acid dissociation constants of the coordinated H2PO 4 ? (3.9) and H PO 4 2? ions (9.1) were estimated. The chemical shifts of the [Rh(NH3)5H2PO4]2+, [Rh(NH3)5HPO4]+, and [Rh(NH3)5PO4]0 complex ions were 8.38 ± 0.03, 10.76 ± 0.05, and 13.63 ± 0.05 ppm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号