首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This new method overcomes problems of conventional analytical methodologies such as light scattering and sampling reproducibility issues. We used this method for mechanistic studies of catalytic reactions under heterogeneous conditions. Direct-type hydroxymethylation reactions and Mukaiyama-type hydroxymethylation reactions both catalyzed by a scandium–bipyridine ligand complex under micellar conditions were employed as examples of heterogeneous reactions. For direct-type hydroxymethylation reactions, initial reaction rate assays revealed first-order dependency on both substrate and catalyst. On the other hand, Mukaiyama-type hydroxymethylation reactions showed first-order rate dependency on substrate, zero-order on catalyst and saturation kinetics on formaldehyde.

A direct and quantitative method for monitoring heterogeneous organic reactions has been developed by using direct analysis in real time mass spectrometry (DART-MS) with an isotope-labeled reaction product as an internal standard.  相似文献   

3.
4.
DART (Direct Analysis in Real Time)-MS is a novel mass spectrometric ion source, and allows the analysis of most compounds at ambient pressure and ground potential by producing [M+H]+ molecular ion species. Using this method, we examined the compounds characteristic of several kinds of licorices. For the analysis of Glycyrrhiza inflata Batalin, the peak at m/z 339 originates mainly from [M+H]+ of licochalcone A (LA), a species-specific compound. This peak was hardly detected in G. glabra Linné and G. uralensis Fischer. These results indicate that G. inflata can be differentiated from the other two species by detection of LA peaks using DART-MS analysis.  相似文献   

5.
6.
The coupling of planar chromatography with direct analysis in real time time-of-flight mass spectrometry (DART-TOF-MS) was shown for the first time. Cutting the plate within a track led to substance zones positioned on the plate edge which were directly introduced into the DART gas stream. Mass signals were obtained instantaneously within seconds. Detectability was shown in the very low ng-range per zone on the example of isopropylthioxanthone. The coupling was perfectly suited for identification and qualitative purposes, but it was initially critical for quantification of results. Analytical response (R2 0.8202) and repeatability were strongly dependent from proper manual positioning of the HPTLC plate into the electronic or vibronic excited-state gas stream of the ion source. This drawback was overcome by using stable isotope-labeled standards shown on the example of caffeine. This way, analytical response (R2 0.9892) and repeatability (RSD < +/- 5.4%, n=6) were improved to a high extent. Spatial resolution by an in-house-built plate holder system was shown to be better than 3 mm. The decay of the signal was observed. The efficacy of this new coupling was compared to a plunger-based extraction device for HPTLC/electrospray ionisation-MS. The latter device showed detectability down to the pg-range, e.g. the limit of quantification for isopropylthioxanthone was found to be 100 pg. Repeatability was comparable (RSD +/- 6.7%), however, without the need of internal standard correction. Analytical response was slightly better and showed a determination coefficient R2 of 0.9983. Similar data were obtained for caffeine as well. Spatial resolution was 2 mm or 4 mm depending on the plunger head used. The comparison showed that HPTLC/DART-TOF-MS is a useful coupling method regarding qualitative aspects and it has the potential to cope also with the difficulties of quantification if isotope-labeled standards were used or if a plate holder system is employed as initially shown.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Phenylketonuria (PKU) is commonly included in the newborn screening panel of most countries, with various techniques being used for quantification of l-phenylalanine (Phe). To diagnose PKU as early as possible in newborn screening, a rapid and simple method of analysis was developed. Using direct analysis in real time (DART) ionization coupled with triple-quadrupole tandem mass spectrometry (TQ-MS/MS) and with use of a 12 DIP-it tip scanner autosampler in positive ion mode, we analyzed dried blood spot (DBS) samples from PKU newborns. The concentration of Phe was determined using multiple reaction monitoring mode with the nondeuterated internal standard N,N-dimethylphenylalanine. The results of the analysis of DBS samples from newborns indicated that the DART-TQ-MS/MS method is fast, accurate, and reproducible. The results prove that this assay as a newborn screen for PKU can be performed in 18 s per sample for the quantification of Phe in DBS samples. DART-TQ-MS/MS analysis of the Phe concentration in DBS samples allowed us to screen newborns for PKU. This innovative protocol is rapid and can be effectively applied on a routine basis to analyze a large number of samples in PKU newborn screening and PKU patient monitoring.
Figure
The method can quantify the amount of phenylalanine in dried blood spot of newborn by using direct analysis in real time (DART) coupled with triple-quadrupole tandem mass spectrometry  相似文献   

14.
采用实时直接分析质谱法原位快速鉴别茶叶   总被引:1,自引:0,他引:1  
Zhang J  Zhang W  Zhou Z  Bai Y  Liu H 《色谱》2011,29(7):681-686
采用近年来发展迅速的常温常压离子化技术——实时直接分析质谱法,建立了对茶叶中主要成分如茶氨酸、咖啡碱等的快速测定方法,通过特征的质谱信号离子,实现了对不同茶叶的快速鉴别。实时直接分析质谱法在大气压下进行,无需对茶叶进行任何的样品处理,大大缩短了分析时间,实现了原位、快速、准确且高通量的检测。  相似文献   

15.
16.
17.
18.
19.
Metabolomic fingerprinting of bodily fluids can reveal the underlying causes of metabolic disorders associated with many diseases, and has thus been recognized as a potential tool for disease diagnosis and prognosis following therapy. Here we report a rapid approach in which direct analysis in real time (DART) coupled with time-of-flight (TOF) mass spectrometry (MS) and hybrid quadrupole TOF (Q-TOF) MS is used as a means for metabolomic fingerprinting of human serum. In this approach, serum samples are first treated to precipitate proteins, and the volatility of the remaining metabolites increased by derivatization, followed by DART MS analysis. Maximum DART MS performance was obtained by optimizing instrumental parameters such as ionizing gas temperature and flow rate for the analysis of identical aliquots of a healthy human serum samples. These variables were observed to have a significant effect on the overall mass range of the metabolites detected as well as the signal-to-noise ratios in DART mass spectra. Each DART run requires only 1.2 min, during which more than 1500 different spectral features are observed in a time-dependent fashion. A repeatability of 4.1% to 4.5% was obtained for the total ion signal using a manual sampling arm. With the appealing features of high-throughput, lack of memory effects, and simplicity, DART MS has shown potential to become an invaluable tool for metabolomic fingerprinting.  相似文献   

20.
This study presents a novel and rapid method to identify chemical markers for the quality control of Radix Aconiti Preparata, a world widely used traditional herbal medicine. In the method, the samples with a fast extraction procedure were analyzed using direct analysis in real time mass spectrometry (DART MS) combined with multivariate data analysis. At present, the quality assessment approach of Radix Aconiti Preparata was based on the two processing methods recorded in Chinese Pharmacopoeia for the purpose of reducing the toxicity of Radix Aconiti and ensuring its clinical therapeutic efficacy. In order to ensure the safety and effectivity in clinical use, the processing degree of Radix Aconiti should be well controlled and assessed. In the paper, hierarchical cluster analysis and principal component analysis were performed to evaluate the DART MS data of Radix Aconiti Preparata samples in different processing times. The results showed that the well processed Radix Aconiti Preparata, unqualified processed and the raw Radix Aconiti could be clustered reasonably corresponding to their constituents. The loading plot shows that the main chemical markers having the most influence on the discrimination amongst the qualified and unqualified samples were mainly some monoester diterpenoid aconitines and diester diterpenoid aconitines, i.e. benzoylmesaconine, hypaconitine, mesaconitine, neoline, benzoylhypaconine, benzoylaconine, fuziline, aconitine and 10-OH-mesaconitine. The established DART MS approach in combination with multivariate data analysis provides a very flexible and reliable method for quality assessment of toxic herbal medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号