首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two vic-dioxime ligands (LxH2) containing morpholine group have been synthesized from 4-[2-(dimethylaminoethyl)] morpholine with anti-phenylchloroglyoxime or anti-monochloroglyoxime in absolute THF at -15 ℃. Reaction of two vic-dioxime ligands with MCl2·nH2O (M: Ni, Cu or Co and n=2 or 6) salts in 1 : 2 molar ratio afforded metal complexes of type [M(LxH)2] or [M(LxH)2·2H2O]. All of metal complexes are non-electrolytes as shown by their molar conductivities (Am) in DMF (dimethyl formamide) at 10^-3 mol·L^-1. Structures of the ligands and metal complexes have been solved by elemental analyses, FT-IR, UV-Vis, ^1H NMR and ^13C NMR, magnetic susceptibility measurements, molar conductivity measurements. Furthermore, redox properties of the metal complexes were investigated by cyclic voltammetry.  相似文献   

2.
4-Morpholinoacetophenone thiosemicarbazone, MAPT, and its nickel(Ⅱ) and copper(Ⅱ) complexes have been prepared and characterized by elemental analysis, magnetic susceptibility, spectral methods (FT-IR, ^1H NMR) and cyclic voltammetry. Electrochemical behaviors of the complexes have been studied by cyclic voltammetry in DMF media showing metal centered reduction processes for both of them. The redox properties, nature of the electrode processes and the stability of the complexes were discussed. [Cu(MAPT)2]Cl2 complex shows Cu(Ⅱ)/Cu(Ⅰ) couple and quasi-reversible wave associated with the Cu(Ⅲ)/Cu(Ⅱ) process. The reduction/oxidation potential values depend on the structures of complexes. Also, the antimicrobial activities of these complexes were determined against S. aureus, E. coli and B. subtilis.  相似文献   

3.
《中国化学快报》2006,17(2):243-246
Schiff base ligand (HL) derived from 4-hexylaniline with isatin (1H-indole-2,3-dione) and its complexes with Cu(Ⅱ), Ni(Ⅱ) were prepared and characterized by analytical, spectroscopic (IR, UV-Vis, Mass) techniques, electrical conductivity, magnetic and thermal measurements. The crystal and molecular structure of [Cu(HL)2Cl2] was determined by a single-crystal X-ray diffraction study. The molecular structure of the title compound has an inversion center on the Cu atom.  相似文献   

4.
Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) complexes(1~4) based on 2-(2-pyridyl)benzimidazole(pbm) and 4,4'-oxybisbenzoic acid(H2odc) were synthesized. The formulas of these complexes are [Cd(pbm)(odc)2](1), [Co(pbm)(odc)2](2), [Cu(pbm)(odc)2](3) and [Zn(pbm)(odc)2](4) confirmed by single-crystal X-ray diffraction analysis, which shows that complexes 1, 2 and 4 belong to monoclinic system with space group P21/n, while complex 3 belongs to monoclinic system with space group P21/c. The binding properties of complexes 1~4 with CT-DNA are evaluated by ultraviolet spectrum, fluorescence spectra and viscosity measurements. The results indicate that complexes 1~4 have strong interaction with CT-DNA binding. These complexes exhibit an electrostatic or groove mode in respect of binding with DNA, which can effectively destroy DNA. And this binding mode may be applied to the interaction between the complexes and cancer cell DNA. Therefore, we hope to provide a theoretical and scientific basis for the research of anti-cancer drugs.  相似文献   

5.
Four new Cu(Ⅱ) complexes with two benzotriazole-based ligands, [Cu2(L^1)2(NO3)2]· 2H2O (1), [Cu2(L^1)2]·2ClO4·2H2O (2), [Cu2(HL^2)2(NO3)4]·2CH3COCH3 (3) and [Cu(HL^2)2(Cl)]·Cl·2CH2Cl2 (4), where HL^1 = 1,3-bis(benzotriazol-2-yl)-2-propanol and HL^2 = 1,3-bis(benzotriazol-1-yl)-2-propanol, were synthesized and structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. It is revealed that complexes 1~3 have dinuclear structures, while 4 possesses a one-dimensional (1-D) chain structure, which extends in two orthogonal orientations. In 1~4, the coordination numbers of Cu(Ⅱ) centers range from four to six, which may be attributed to the different geometries and coordination abilities of the ligands and anions. The L^1 ligand in complexes 1 and 2 adopts a tridentate di-chelating coordination mode, whereas ligand HL^2 in complexes 3 and 4 has a bidentate bridging coordination mode. The different coordination modes of these two ligands may be explained by the different charges of nitrogen donor atoms in the benzotriazole ring, which has been investigated by density functional theory (DFT) calculations.  相似文献   

6.
张树芹  侯万国 《中国化学》2007,25(10):1455-1460
Layered double hydroxide (LDH) with a Mg/Al molar ratio of 1 : 1 was synthesized by using a co-precipitation method and its calcined product (CLDH) was obtained by calcination of the MgAl-LDH at 500 ℃. The sorption removal of Pb^2+ from solution was investigated, finding that both LDH and CLDH show good sorption ability and they could be used as a new type of environmental sorbent for the removal of Pb^2+ from water. The sorption kinetics and the sorption isotherms of Pb^2+ on both LDH and CLDH can be described by the pseudo-second order kinetics and Freundlich isotherm, respectively, under the studied conditions. The sorption amounts of Pb^2+ on LDH and CLDH are independent of pH in a pH range of about 3-10. The presence of NaNO3 may inhibit the sorption of Pb^2+ on LDH while hardly affect that on CLDH. The sorption mechanism of Pb^2+ on LDH and CLDH may be attributed to the surface precipitation and the surface complex adsorption. The surface complex adsorption may be further distinguished to the chemical binding adsorption forming the inner-sphere surface complexes and the electrostatic binding adsorption forming the outer-sphere surface complexes. The sorption mechanism of Pb^2+ on LDH may be attributed to the surface precipitation and the electrostatic binding adsorption, while that on CLDH may be attributed to the surface precipitation and the chemical binding adsorption.  相似文献   

7.
8.
Two supramolecular complexes [Zn(tacd)2](C6H8O4)·6H2O(1) and [Cu(tacd)2]Cl2·4H2O(2) were synthesized and characterized by elemental analysis, IR spectra, TGA and single-crystal X-ray diffraction analysis. The crystal structure showed that the metal ions in complexes 1 and 2 had similar coordination circumstance. But for the complex 2, it formed a novel two-dimensional supramolecular network with 12-membered rings and four-membered rings via hydrogen bond interaction. The thermal gravimetric analyses indicated that the two complexes had similar steps of weight-loss. On the basis of experiment, the two complexes were calculated by DFT-B3LYP/6-31G(d) in Gaussian 03. The results of calculation are in good agreement with the experiment.  相似文献   

9.
In order to study the Fe-Cu interactions and their effects on 31p NMR, the structures of mononuclear complex Fe(CO)3fPhzPpy)a 1 and binuclear complexes Fe(CO)3(PhEPpy)z(CuXn) (2: Xn = Cl2^2-, 3: Xn = Cl-, 4: Xn = Br-) are calculated by density functional theory (DFT) PBE0 method. For complexes 1, 3 and 4, the 31p NMR chemical shifts calculated by PBE0-GIAO method are in good agreement with experimental results. The 31p chemical shift is 82.10 ppm in the designed complex 2. The Fe-Cu interactions (including Fe→Cu and Fe←Cu charge transfer) mainly exhibit the indirect interactions. Moreover, the Fe-Cu(I) interactions (mostly acting as σFe-p→4Scu and aFe-C→4Scu charge transfer) in complexes 3 and 4 are stronger than Fe-Cu(Ⅱ) interactions (mostly acting as σFe-p→4Scu and σFe-p←4Sc,) in complex 2. In complex 2, the stronger Fe←Cu interac- tions, acting as σFe-p←44SCu charge transfer, increase the electron density on P nucleus, which causes the upfield 31p chemical shift compared with mononuclear complex 1. For 3 and 4, although a little deshielding for P nucleus is derived from the delocalization of σFe-p→4Scu due to the Fe→Cu interactions, the stronger σFe-c→np charge-transfer finally increases the electron density on P nucleus. As a result, an upfield 31p chemical shift is observed compared with 1. The stability follows the order of 2〉3=4, indicating that Fe(CO)3(PhzPpy)2(CuCl2) is stable and could be synthesized experimentally. The N-Cu(Ⅱ) interaction plays an important role in the stability of 2. Because the delocalization of σFe-p→4SCu and σFe-c→πc-o weakens the a bonds of Fe-C and ~r bonds of CO, it is favorable for increasing the catalytic activity of binuclear complexes. Complexes 3 and 4 are expected to show higher catalytic activity compared to 2.  相似文献   

10.
Two new zinc(Ⅱ) complexes, [Zn2L2Ch].2[ZnL(CH3OH)Cl2] 1 and [ZnL2(NO3)2] 2, were synthesized by reacting ZnX2.nH2O (X = Cl^-, NO3^-) and a Schiff base ligand 2-[(4-methylphenylimino)methyl]-6-methoxyphenol (C15HIsNO2, L) which was obtained by the condensation of o-vanillin (2-hydroxy-3-methoxybenzaldehyde) with p-toluidine. Both 1 and 2 were characterized by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, IH-NMR spectra and thermogravimetrie analysis. The Schiff base ligand and its zinc(Ⅱ) complexes have been tested in vitro to evaluate their antibacterial activity against bacteria, viz., Escherichia Coli, Staphylococcus aureus and Bacillus Subtilis. The results show that these complexes have higher activity than the corresponding free Schiff base ligand against the same bacteria.  相似文献   

11.
Three new μ‐oxamido‐bridged heterodinuclear copper (II)‐chromium (III) complexes formulated [Cu(Me2oxpn)Cr‐(L)2](NO3)3, where Me2oxpn denotes N,N'‐bis(3‐amino‐2, 2‐dimethylpropyl)oxamido dianion and L represents 5‐methyl‐1,10‐phenanthroline (Mephen), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2phen) or 2,2′‐bipyridine (bpy), have been synthesized and characterized by elemental analyses, IR and electronic spectral studies, magnetic moments of room‐temperature and molar conductivity measurements. It is proposed that these complexes have oxamido‐bridged structures consisting of planar copper (II) and octahedral chromium (III) ions. The variable temperature magnetic susceptibilities (4.2–300 K) of complexes [Cu(Me2oxpn)Cr(Ph2phen)2](NO3)3 (1) and [Cu(Me2oxpn)Cr(Mephen)2] (NO3)3 (2) were further measured and studied, demonstrating the ferromagnetic interaction between the adjacent chromium (III) and copper (II) ions through the oxamido‐bridge in both complexes 1 and 2. Based on the spin Hamiltonian, ? = ‐ 2J?1 · ?2, the exchange integrals J were evaluated as + 21.5 an?1 for 1 and + 22.8 cm?1 for 2.  相似文献   

12.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

13.
Four new copper (II)‐manganese (II) heterobinuclear complexes bridged byN, N'‐bis[2‐(dimethylamino)ethyl)]oxamido dianion (dmoxæ) and end‐capped with 1, 10‐phenanthroline (phen), 5‐methyl‐1, 10‐phenanthroline (Mephen), diaminoethane (en) or 1,3‐di‐aminopropane (pn). respectively, namely, [Cu(dmoxae)MnL2] (CIO4)2 (L=phen, Mephen, en, pn), have been synthesized and characterized by elemental analyses, IR, electronic spectral studies, and molar conductivity measurements. The electronic reflectance spectrum indicates the presence of spin exchange‐coupling interaction between bridged copper(II) and manganese (II) ions. The cryomagnetic measurements (4.2‐300 K) of [Cu(dmoxae)Mn(phen)2](CIO4)2 (1) and [Cu(dmoxae)Mn(Mephen)2](CIO4)2(2) complexes demonstrated an antiferromagnetic interaction between the adjacent manganese(II) and copper (II) ions through the oxamido‐bridge within each molecule. On the basis of spin Hamiltonian, H= ‐ 2JS1. S2. the magnetic analysis was carried out for the two complexes and the spin‐coupling constant (J) was evaluated as ?35.9 cm?1 for 1 and ‐ 32.6 cm?1 for 2. The influence of methyl substitutions in the amine groups of the bridging ligand on magnetic interactions between the metal ions of this kind of complexes is also discussed.  相似文献   

14.
Seven new μ‐oxamido copper(II)‐lanthanide(III) heterobimetalic complexes described by the formula Cu(obbz) Ln‐(Ph‐phen)2NO3(Ln = La, Nd, Eu, Gd, Tb, Ho, Er), where obbz denotes the oxamidobis(benzoato) and Ph‐phen represents 5‐phenyl‐1, 10‐phenanthroline, have been synthesized and characterized by the elemental analyses, spectroscopic (IR, UV, ESR) studies, magnetic moments (at room temperature) and molar conductivity measurement. The temperature dependence of the magnetic susceptibility of Cu(obbz)Gd(Ph‐phen)2NO3 complex has been measured over the range 4.2–300 K. The least‐squares fit of the experimental susceptibilities based on the spin Hamiltonian operator, ? = ?2 J?1·?2, yielded J= +1.28 cm?1, a weak ferromagnetic coupling, A plausible mechanism for a ferromagnetic coupling between Gd(III)‐Cu(II) is discussed in terms of spin‐polarization.  相似文献   

15.
顾文秀  夏文水 《中国化学》2006,24(10):1458-1461
A novel synthesis of the functional carbohydrate 2-amino-2-deoxy-D-gluconic acid was introduced and itscomplex formation with Cu(Ⅱ)was investigated to obtain the stability constant for its further applications to thefood and pharmaceutical industries.The equilibrium was investigated by spectrophotometric measurements andprocessed by dual-series linear regression method.Results:the yield of 2-amino-2-deoxy-D-gluconic acid is 70%.The complexation molar ratio is 1:2,the molar apsorptivity of the complex is 39.906 L·mol~(-1)·cm~(-1) at 630 nm,and the stability constant β_n is 6.24×10~5.  相似文献   

16.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

17.
Two new complexes: [Cu(TBZ)(bipy)Cl]Cl·H2O ( 1 ) and [Cu(TBZ)(phen)Cl]Cl·H2O ( 2 ) [TBZ=2‐(4′‐thiazolyl)‐ benzimidazole, phen=1,10‐phenanthroline and bipy=2,2′‐bipyridine] have been synthesized and characterized by elemental analysis, molar conductivity, IR, and UV‐vis methods. Complex 2 , structurally characterized by single‐crystal X‐ray crystallography, crystallizes in the monoclinic space group P21/c in a unit cell of a=0.85257(12) nm, b=2.5358(4) nm, c=1.15151(13) nm, β=118.721(8)°, V=2.183.2(5) nm3, Z=4, Dc=1.624 g·cm−3, µ=1.367 mm−1. The complexes, free ligands and chloride copper(II) salt were each tested for their ability to inhibit the growth of two gram‐positive (B. subtilis and S. aureus) and two gram‐negative (Salmonella and E. coli) bacteria. The complexes showed good antibacterial activities against the microorganisms. The interaction between the complexes and calf thymus DNA in aqueous solution was investigated adopting electronic absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and cyclic voltammetry. Results suggest that the two complexes can bind to DNA by intercalative mode. In addition, the result of agarose gel electrophoresis suggested that the complexes can cleave the plasmid DNA at physiological pH and room temperature. Mechanistic studies with different inhibiting reagents reveal that hydroxyl radicals, and a singlet oxygen‐like copper‐oxo species are all involved in the DNA scission process mediated by the complexes.  相似文献   

18.
Two new transition metal dicyanamide complexes [Co2(tppz)(dca)4]·CH3CN ( 1 ) [tppz=tetra(2‐pyridyl)pyrazine, dca=dicyanamide] and [Co(tptz)(dca)(H2O)](dca) ( 2 ) [tptz=2,4,6‐tri(2‐pyridyl)‐1,3,5‐triazine] were synthesized and characterized by single crystal X‐ray diffraction analysis. In 1 each cobalt(II) atom is coordinated to three dca anions and one tppz molecule to form a distorted octahedral geometry, the neigbour two cobalt(II) atoms are bridged by one tppz ligand to form a dimer, then the cobalt(II) atoms in each dimer are joined together to form a ladder chain structure. In 2 the coordination geometry around the central metal is also distorted octahedral, each cobalt(II) atom is coordinated by two dca anions, one tptz molecule and one water ligand to form a cationic part, and the cationic part is linked with the free dca anions via the electrostatic attraction to give an infinite chain structure. Magnetic susceptibility measurement in the range of 2–300 K indicates that there are antiferromagnetic couplings between adjacent metal ions in 1 (T>29 K, (=?9.78 K, C=4.92 cm3·K·mol?1) and ferromagnetic couplings in 2 (T>150 K, (=7.97 K, C=2.59 cm3·K·mol?1) respectively.  相似文献   

19.
Four μ- oxamido heterodinuclear complexes, [Cu (oxae) Cr (L)2 ] (NO3) 3, where oxae denotes the N, N'bis (2-aminoethyl) oxamido dianion and L represents 1,10-phenanthroline (phen); 5-nitro-1,10-phenanthroline (NO2-phen); 5-methyl-1, 10-phenanthroline (Me-phen) and 2, 2′-bipyridine (bpy), have been synthesized and characterized by elemental analyses, magnetic moments (at room temperature) and molar conductivity measurements and spectroscopy. It is proposed that these complexes have extended oxamido-bridged structures consisting of a copper (II) ion and a chromium (III) ion, which have a square planar environment and octahedral environment, respectively. The cryomagnetic properties of the [Cu(oxae)Cr(bpy)2(NO3)3(1) and [Cu(oxae)Cr(phen)2](NO3)3(2) complexes have been measured over the range of 4.2–300 K. The leastsquares fit of the experimental data based on the spin Hamiltonian, ? = - 2J?1·?2, the exchange integrals (J) were evaluated as +36.9 cm?1 for 1 and +35.8 cm?1 for 2. The reds have connived that the spin coupling between the adjacent copper (II) and chromium (III) ions through oxamido-bridge in both 1 and 2 is ferromagnetic.  相似文献   

20.
Two water‐soluble 6‐(pyrazin‐2‐yl)‐1,3,5‐triazine‐2,4‐diamino (pzta)‐based Cu(II) complexes, namely [Cu(l ‐Val)(pzta)(H2O)]ClO4 ( 1 ) and [Cu(l ‐Thr)(pzta)(H2O)]ClO4 ( 2 ) (l ‐Val: l ‐valinate; l ‐Thr: l ‐threoninate), were synthesized and characterized using elemental analyses, molar conductance measurements, spectroscopic methods and single‐crystal X‐ray diffraction. The results indicated that the molecular structures of the complexes are five‐coordinated and show a distorted square‐pyramidal geometry, in which the central copper ions are coordinated to N,N atoms of pzta and N,O atoms of amino acids. The interactions of the complexes with DNA were investigated using electronic absorption, competitive fluorescence titration, circular dichroism and viscosity measurements. These studies confirmed that the complexes bind to DNA through a groove binding mode with certain affinities (Kb = 4.71 × 103 and 1.98 × 103 M?1 for 1 and 2 , respectively). The human serum albumin (HSA) binding properties of the complexes were also evaluated using fluorescence and synchronous fluorescence spectroscopies, indicating that the complexes could quench the intrinsic fluorescence of HSA in a static quenching process. The relevant thermodynamic parameters revealed the involvement of van der Waals forces and hydrogen bonds in the formation of complex–HSA systems. Finally, molecular docking technology was also used to further verify the interactions of the complexes with DNA/HSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号