共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
D. Mruga Dr. O. Soldatkin K. Paliienko A. Topcheva Dr. N. Krisanova D. Kucherenko Prof. Dr. T. Borisova Dr. S. Dzyadevych Dr. A. Soldatkin 《Electroanalysis》2021,33(5):1299-1307
Today, the concentration of glutamate in the patient′s blood is an important indicator in medical diagnostics; therefore, it is necessary to have a simple, accurate, and fast tool to obtain the data. Here, a recently developed amperometric glutamate-sensitive biosensor was optimized to improve its characteristics. The platinum disk electrode was used as a transducer. As a bioselective element we used the enzyme glutamate oxidase, covalently crosslinked with bovine serum albumin by glutaraldehyde. Circumstances of enzyme immobilization on the transducer‘s surface were optimized (enzyme and glutaraldehyde concentrations and immobilization duration). To test the ability of this biosensor to work in biological environments containing complex biological substances, the influence of the working solution was investigated (concentration of the working buffer, its temperature, presence of the protein in the analyzed sample). The linear range of biosensor was from 5 to 600 μM of glutamate and the sensitivity was 150–200 nA/mM. Measurements of glutamate concentrations in the blood plasma were performed by biosensor and glutamate dehydrogenase assay. The linear correlation between the methods was found in a range of 50.4–182.5 μM (R2=0.99). Thus, it has been shown that the developed biosensor makes it possible to measure the concentration of glutamate in blood plasma. 相似文献
3.
采用微渗析活体取样技术和高效液相色谱电化学检测法,测定了鼠脑纹状体中的3种单胺类神经递质多巴胺(DA)、3,4二羟基苯乙酸(DOPAC)和5羟吲哚乙酸(5HIAA)。在3.0×10-8~1.0×10-5mol/L浓度范围内,DA、DOPAC和5HIAA的浓度分别与氧化峰的峰电流呈良好的线性关系。通过在灌流液中加入1.0×10-5mol/L的NO释放剂硝普钠(SNP),研究了NO对DA释放的影响,结果表明:受NO刺激后纹状体中DA的量为基础水平的150%。 相似文献
4.
Amperometric Biosensor for Choline Based on Gold Screen‐Printed Electrode Modified with Electrochemically‐Deposited Silica Biocomposite 下载免费PDF全文
I. Mazurenko O. Tananaiko O. Biloivan M. Zhybak I. Pelyak V. Zaitsev M. Etienne A. Walcarius 《Electroanalysis》2015,27(7):1685-1692
A mediator‐free choline biosensor was developed using the electrochemically assisted sol‐gel deposition on gold screen‐printed electrodes. The addition of 12 mM of cationic surfactant CTAB in silica sol allowed enhancing the stability of the sensor. The modified electrode demonstrated catalytic activity and stable amperometric response to choline for over 3 weeks of exploitation with the sensitivity of 6 µA mM?1 and LOD of 6 µM. The interference of ascorbic acid was reduced by pretreating the analyzed solution with MnO2 powder. The application of the sensor with the purpose of identifying choline in the baby milk demonstrated satisfactory metrological characteristics. 相似文献
5.
《Analytical letters》2012,45(5):913-926
Abstract A new nanocomposite was developed by combination of prussian blue (PB) nanoparticles and multiwalled carbon nanotubes (MWNTs) in the matrix of biopolymer chitosan (CHIT). The PB and MWNTs had a synergistic electrocatalytic effect toward the reduction of hydrogen peroxide. The CHIT/MWNTs/PB nanocomposite‐modified glassy carbon (GC) electrode could amplify the reduction current of hydrogen peroxide by ~35 times compared with that of CHIT/MWNTs/GC electrode and reduce the response time from ~60 s for CHIT/PB/GC to 3 s. Besides, the CHIT/MWNTs/PB nanocomposite‐modified GC electrode could reduce hydrogen peroxide at a much lower applied potential and inhibit the responses of interferents such as ascorbic acid (AA) uric acid (UA) and acetaminophen (AC). With glucose oxidase (GOx) as an enzyme model, a new glucose biosensor was fabricated. The biosensor exhibited excellent sensitivity (the detection limit is down to 2.5 µM), fast response time (less than 5 s), wide linear range (from 4 µM to 2 mM), and good selection. 相似文献
6.
A simple, selective and stable biosensor with the enzymatic reactor based on choline oxidase (ChOx) was developed and applied for the determination of choline (Ch) in flow injection analysis with amperometric detection. The enzyme ChOx was covalently immobilized with glutaraldehyde to mesoporous silica powder (SBA‐15) previously covered by NH2‐groups. This powder was found as an optimal filling of the reactor. The detection of Ch is based on amperometric monitoring of consumed oxygen during the enzymatic reaction, which is directly proportional to Ch concentration. Two arrangements of an electrolytic cell in FIA, namely wall‐jet cell with working silver solid amalgam electrode covered by mercury film and flow‐through cell with tubular detector of polished silver solid amalgam were compared. The experimental parameters affecting the sensitivity and stability of the biosensor (i. e. pH of the carrier solution, volume of reactor, amount of the immobilized enzyme, the detection potential, flow rate, etc.) were optimized. Under the optimized conditions, the limit of detection was found to be 9.0×10?6 mol L?1. The Michaelis‐Menten constant for covalently immobilized ChOx on SBA‐15 was calculated. The proposed amperometric biosensor with the developed ChOx‐based reactor exhibits good repeatability, reproducibility, long‐term stability, and reusability. Its efficiency has been confirmed by the successful application for the determination of Ch in two commercial pharmaceuticals. 相似文献
7.
《Electroanalysis》2006,18(12):1208-1214
A reagentless amperometric biosensor sensitive to lactate was developed. This sensor comprises a carbon paste electrode modified with lactate dehydrogenase (LDH), nicotinamide adenine dinucleotide (NAD+) cofactor and Meldola's blue (MB) adsorbed on silica gel coated with niobium oxide. The amperometric response was based on the electrocatalytic properties of MB to oxidize NADH, which was generated in the enzymatic reaction of lactate with NAD+ under catalysis of LDH. The dependence on the biosensor response was investigated in terms of pH, supporting electrolyte, ionic strength, LDH and NAD+ amounts and applied potential. The biosensor showed an excellent operational stability (95% of the activity was maintained after 250 determinations) and storage stability (allowing measurements for over than 2.5 months, when stored in a refrigerator). The proposed biosensor also presented good sensitivity allowing lactate quantification at levels down to 6.5×10?6 mol L?1. Moreover, the biosensor showed a wide linear response range (from 0.1 to 14 mmol L?1 for lactate). These favorable characteristics allowed its application for direct measurements of lactate in biological samples such as blood. The precision of the data obtained by the proposed biosensor show reliable results for real complex matrices. 相似文献
8.
掺杂纳米普鲁士蓝溶胶-凝胶修饰葡萄糖生物传感器 总被引:4,自引:0,他引:4
采用溶胶-凝胶法制备了纳米普鲁士蓝微粒,将含纳米普鲁士蓝微粒的TiO2溶胶-凝胶固定在玻碳电极表面得到纳米普鲁士蓝修饰电极,该电极对H2O2产生灵敏的响应,线性范围为0.5~400μmoL/L,较常规普鲁士蓝修饰电极(线性范围为25~500μmol/L)灵敏。电极表面再用溶胶.凝胶法固定葡萄糖氧化酶后构建了葡萄糖生物传感器,响应范围0~20mmoL/L,葡萄糖氧化酶表观米氏常数为8.04mmoL/L。实验表明,该法适合于批量制作高灵敏和高重现性的生物传感器。 相似文献
9.
10.
Impedimetric Detection of DNA Damage with the Sensor Based on Silver Nanoparticles and Neutral Red 下载免费PDF全文
Yury Kuzin Anna Porfireva Veronika Stepanova Vladimir Evtugyn Ivan Stoikov Gennady Evtugyn Tibor Hianik 《Electroanalysis》2015,27(12):2800-2808
Novel electrochemical DNA‐sensor based on glassy carbon electrode (GCE) modified with Ag nanoparticles, Neutral red covalently attached to its surface and native DNA adsorbed on modifier coating was developed for the estimation of DNA damage on example of model system based on Fenton reagent. As was shown, the oxidation process resulted in synchronous increase of electron transfer resistance and capacitance measured by electrochemical impedance spectroscopy (EIS). The contribution of each sensor component on the signal was specified and sensitivity estimated against similar surface coatings. The shift of EIS parameters was found to be higher than that of similar biosensors reported. The DNA sensor was tested on the estimation of antioxidant capacity of green tea infusions again the results of coulometric titration with electrogenerated bromine. 相似文献
11.
《Electroanalysis》2003,15(10):892-897
A new chemically modified electrode (CME) was fabricated, which was based on the immobilization of multi‐wall carbon nanotubes fuctionalized with carboxylic group (MWNT‐COOH). The results indicated that the CME exhibited efficiently electrocatalytic oxidation for L ‐cysteine and glutathione with relatively high sensitivity, stability and long‐life. Coupled with HPLC, the MWNT‐COOH CME was utilized for amperometric detection of the thiols. The peak currents of L ‐cysteine and glutathione were linear to their concentrations ranging from 3.0×10?7 to 1.0×10?3 mol/L with the calculated detection limit (S/N=3) of 1.2×10?7, 2.2×10?7 mol/L, respectively. The method had been successfully applied to assess the contents of L ‐cysteine and glutathione in rat striatal microdialysates. 相似文献
12.
通过改进的热溶剂胶体合成法制备了单分散的Ni12P5纳米粒子,并利用X射线衍射、透射电子显微镜、X射线光电子能谱、X射线能谱对Ni12P5纳米粒子的晶体结构、化学组成和形貌等进行了表征。基于单分散Ni12P5纳米粒子研制出的非酶葡萄糖传感器具有出色的性能,其快速响应时间小于3 s,检测范围广(0.002~4.2 mmol·L-1),灵敏度高达1 572 mA·L·mol-1·cm-2,检测限低至0.8 μmol·L-1。此外,该传感器在用于人体血液中葡萄糖的实际检测中取得了满意的效果。 相似文献
13.
Erika Scavetta Lorella Guadagnini Adriana Mignani Domenica Tonelli 《Electroanalysis》2008,20(20):2199-2204
An amperometric biosensor based on Pt electrodes modified with a thin film of a Ni, Al layered double hydroxide (LDH), submitted to a preliminary oxidative treatment in order to have the nickel centers at the oxidation state +4, and glucose oxidase (GOx) is presented. The oxidized LDH acts both as a system to support the enzyme and as a barrier to anions since it acquires an overall negative charge, as demonstrated by electrochemical impedance spectroscopy. Even if the biosensor response is due to the detection of H2O2 at anodic potentials, glucose can be accurately determined in the presence of ascorbic acid or other interferences, commonly present in real matrices in anionic form, since they can not reach the electrode surface. The effectiveness of the developed biosensor has been demonstrated by measuring glucose in samples of fruit juices containing ascorbic acid at high levels. 相似文献
14.
采用表面印迹技术,以磁性二氧化硅纳米粒子(Fe3O4@SiO2 NPs)作为载体、血红蛋白(Hb)为模板分子、正硅酸乙酯(TEOS)为印迹聚合物单体,制备了Hb印迹Fe3O4@SiO2的磁性印迹纳米粒子(MMIPs NPs). MMIPs NPs具有磁性内核和血红蛋白印迹壳层的核壳结构,可以富集并固定Hb. 使用壳聚糖将MMIPs NPs固定于磁性电极表面,构建血红蛋白类酶生物传感器,研究了Hb对过氧化氢(H2O2)的催化活性. MMIPS NPS相比于磁性非印迹纳米粒子(MNIPS NPS),催化电流增加了14.3%. 采用磁性电极,MMIPS NPS、Hb和O2的顺磁性使得该类酶生物传感器对H2O2的催化电流增加了60.0%. 血红蛋白类酶生物传感器电流响应与H2O2浓度在25 ~ 200 μmol·L-1间呈线性关系,检出限为3 μmol·L-1(S/N=3),表明该类酶传感器对H2O2具有良好的催化性能. 相似文献
15.
Hg2+是一种具有生物蓄积性和毒性的重金属, 对环境和人类健康均可造成严重损害. 因此, 开发便捷的Hg2+传感器非常必要. 本文基于溶液栅控石墨烯场效应晶体管的优异性能, 通过氮硫杂冠醚的尺寸效应以及冠醚与Hg2+的螯合作用来特异性识别Hg2+, 制备了一种冠醚功能化栅极的溶液栅控石墨烯场效应晶体管(SGGT)传感器. 该SGGT传感器因其固有的信号放大功能而比传统电化学检测Hg2+更灵敏, 其检出限为1×10-12 mol/L, 比传统电化学传感器降低了2~3个数量级, 在1×10-12~1×10-7 mol/L检测范围内, 狄拉克点的变化值与目标物浓度的对数值之间存在良好的线性关系, 同时具有极高的选择性. 对实际湖水样品的检测效果良好, 对Hg2+的检测标准偏差为1.10%~3.77%. 本文结果表明, 该晶体管传感器可以对Hg2+进行高选择和高灵敏检测. 相似文献
16.
《Analytical letters》2012,45(4):661-676
Abstract A novel amperometric sensor of hydrogen peroxide was constructed. Hemoglobin (Hb) was successfully immobilized on nanometer‐sized SiO2, which was supported by chitosan. Chitosan was acted as dispersant. The determination of hydrogen peroxide was performed in the presence of an electron mediator hydroquinone. Hb immobilized on the SiO2/chitosan composite film displayed excellent electrocatalytical activity to the reduction of H2O2. The linear range of detection towards H2O2 was from 6.25×10?7 to 1.63×10?4mol/L with a detection limit of 1.8×10?7mol/L (S/N=3). The apparent Michaelis‐Menten constant (K app M) was found to be 0.75mmol/L. 相似文献
17.
利用反相微乳液法制备了壳聚糖-Ru(bpy)2+3-SiO2复合纳米粒子,采用Nafion/MCNT复合膜技术实现了对复合纳米粒子有效而稳定的固定,从而制备了电化学发光传感器,实现了对尿酸的检测。在0.1 mol/L PBS缓冲溶液(pH 7.4)中,当尿酸与修饰电极作用15 min时,电化学发光强度与尿酸浓度(1.0×10-10~1.0×10-5 mol/L)的负对数呈良好的线性关系,线性方程为IECL=-709.52-202.74lgC,相关系数R=0.9936,检出限为6.0×10-12 mol/L。传感器表现出良好的重现性与稳定性,对1.0×10-8 mol/L尿酸平行测定11次,发光强度的相对标准偏差为2.9%,测定尿酸实际样品的加标回收率在98.5%~103.5%之间。 相似文献
18.
One of the major problems in amperometric biosensors based on detection of H2O2 produced by enzymatic reaction between oxidase enzymes and substrate is the interference of redox active compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). To minimize these interferences, sodium bismuthate was used for the first time as an insoluble pre‐oxidant in the flow injection (FI) amperometric glucose biosensor at a Glucose oxidase (GOx) immobilized Pt/Pd bimetallic modified pre‐anodized pencil graphite electrode (p.PGE). In this context, these interfering compounds were injected into a flow injection analysis (FIA) system using an injector which was filled with NaBiO3. Thus, these interferents were converted into their redox inactive oxidized forms before reaching the electrode in the flow cell. While glucose was not influenced by the pre‐oxidant in the injector, the huge oxidation peak currents of the interferents decreased significantly in the biosensor. FI amperometric current time curves showed that the AA, DA and UA were minimized by 96 %, 86 %, and 98 % respectively, in the presence of an equivalent concentration of interferences in a 1.0 mM glucose solution. The proposed FI amperometric glucose biosensor exhibits a wide linear range (0.01–10 mM, R2=0.9994) with a detection limit of 2.4×10?3 mM. Glucose levels in the artificial serum and two real samples were successfully determined using the fabricated FI amperometric biosensor. 相似文献
19.
《Electroanalysis》2006,18(5):499-506
A new amperometric sensor for the determination of trichloroacetic acid (TCA) was developed based on the immobilization of myoglobin/colloidal gold nanoparticles in titania sol–gel matrix. The sensor showed a pair of well‐defined and nearly reversible cyclic voltammetric peaks for the Mb Fe(III)/Fe(II) with a formal potential (E°′) of ?335 mV and a peak‐to‐peak separation was 61 mV vs. Ag/AgCl (3.0 M KCl) at 100 mV s?1 in 0.1 M pH 7.0 phosphate buffer solutions (PBS). The formal potential of the Mb Fe(III)/Fe(II) couple shifted linearly with the pH with a slope of ?51.3 mV/pH, indicating that an electron transfer accompanies single‐proton transportation. The sensor displayed a good electrocatalytic response toward the reduction of TCA and the catalytic mechanism was also discussed. The overpotential for the reduction of TCA was lowered by at least 0.8 V compared with that obtained at bare glassy carbon electrode. The linear range spans the concentration of TCA from 2.0×10?6 to1.2×10?5 M and the detection limit was 1.2×10?7 M. In addition, the stability, repeatability and selectivity of the sensor were also evaluated. 相似文献
20.
《中国化学》2017,35(8):1305-1310
A novel biosensor was fabricated based on the immobilization of tyrosinase and N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles onto the surface of the glassy carbon electrode via the film forming by chitosan. The NAC‐AuNPs (N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles) with the average size of 3.4 nm had much higher specific surface area and good biocompatibility, which were favorable for increasing the immobilization amount of enzyme, retaining the catalytic activity of enzyme and facilitating the fast electron transfer. The prepared biosensor exhibited suitable amperometric responses at −0.2 V for phenolic compounds vs. saturated calomel electrode. The parameters of influencing on the working electrode such as pH , temperature, working potential were investigated. Under optimum conditions, the biosensor was applied to detect catechol with a linear range of 1.0 × 10−7 to 6.0 × 10−5 mol•L−1 , and the detection limit of 5.0 × 10−8 mol•L−1 (S /N =3). The stability and selectivity of the proposed biosensor were also evaluated. 相似文献