首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
一种新型储氢材料——改性四氧化三铁的储氢性能研究   总被引:2,自引:0,他引:2  
以金属Mo, Al, Cr, W可溶盐为添加物, 通过共沉淀法由FeCl3和(NH4)2Fe(SO4)2•6H2O的水溶液制备了单金属添加的Fe3O4改性储氢材料. 采用循环储氢性能评价方法, 研究了材料的储氢性能; 利用X射线粉末衍射、SEM扫描电镜和BET比表面积测试手段, 分析了材料储-放氢前后的微观结构. 结果表明: 添加了Mo金属的Fe3O4材料四次循环的放氢温度最低, 为310~314 ℃(放氢速率为300 μmol•min-1•Fe-g-1), 低于目前同类最好的储氢材料(50 ℃左右); 对材料的微观结构研究表明: 采用本文方法制备的金属添加的Fe3O4储氢材料其粒度大约在50~70 nm. 此外, 材料的催化活性主要与掺杂的金属类型和材料粒度的大小有关.  相似文献   

2.
WANG  Guiling  ZHANG  Weicai  CAO  Dianxue  LIU  Jincheng  WANG  Xunying  ZHANG  Sen  SUN  Kening 《中国化学》2009,27(11):2166-2170
The effects of hot alkaline treatment and Fe2O3 modification of hydrogen storage alloy on the electrocatalytic activity for oxidation of borohydride have been investigated using linear sweep voltammetry. The performance of borohydride electrochemical oxidation was significantly influenced by the hot alkaline treatment and Fe2O3 modification of the hydrogen storage alloy. The results showed that the current density of the Fe2O3‐modified hot alkaline‐treated hydrogen storage alloy electrode containing 5 wt% Fe2O3 reached 125 mA·cm?2 in 0.10 mol·L?1 NaBH4 and 2 mol·L?1 NaOH solution at ?0.55 V vs. saturated Ag/AgCl, KCl electrode.  相似文献   

3.
Mesoporous silica thin films encapsulating a molecular iron‐triazole complex, Fe(Htrz)3 (Htrz=1,2,4,‐1H‐triazole), have been generated by electrochemically assisted self‐assembly (EASA) on indium‐tin oxide (ITO) electrode. The obtained modified electrodes are characterized by well‐defined voltammetric signals corresponding to the FeII/III centers of the Fe(Htrz)3 species immobilized into the films, indicating fast electron transfer processes and stable operational stability. This is due to the presence of a high density of redox probes in the material (1.6×10?4 mol g?1 Fe(Htrz)3 in the mesoporous silica film) enabling efficient charge transport by electron hopping. The mesoporous films are uniformly deposited over the whole electrode surface and they are characterized by a thickness of 110 nm and a wormlike mesostructure directed by the template role played by Fe(Htrz)3 species in the EASA process. These species are durably immobilized in the material (they are not removed by solvent extraction). The composite mesoporous material (denoted Fe(Htrz)3@SiO2) is then used for the electrocatalytic detection of hydrogen peroxide, which can be performed by amperometry at an applied potential of ?0.4 V versus Ag/AgCl and by flow injection analysis. The organic‐inorganic hybrid film electrode displays good sensitivity for H2O2 sensing over a dynamic range from 5 to 300 μM, with a detection limit estimated at 2 μM.  相似文献   

4.
Fe3O4 nanoparticles (NPs) were prepared by the co‐precipitation of Fe3+ and Fe2+ with ammonium hydroxide, and were modified by four different surfactants. The modified Fe3O4 NPs were characterized by Fourier transform infrared spectroscopy, X‐ray powder diffraction, transmission electron microscopy and vibrating sample magnetometer. Then, the modified Fe3O4 NPs were dispersed in ethiodized‐oil by mechanical agitation and ultrasonic vibration to obtain stable Fe3O4/ethiodized‐oil magnetic fluids (MFs). The magnetic properties and rheological properties of the MFs were measured using a Gouy magnetic balance and a rotational rheometer, respectively. The saturation magnetization of the Fe3O4 modified by oleic acid was 52.1 emu/g. Furthermore, the result showed that the inductive heating effect of oleic acid stabilized Fe3O4/ethiodized‐oil MF was remarkable and it only took 650 s for the temperature rising from 25°C to 65°C. The specific absorption rate of the MF was 50.16 W/(g of Fe). It had a potential application in arterial embolization hyperthermia.  相似文献   

5.
以Fe粉为原料, 以金属Mo, Al和Ni可溶性盐作为添加剂, 通过浸渍法制备单金属添加和双金属添加的改性铁氧化物储氢材料Fe-Mo, Fe-Al, Fe-Mo-Ni和Fe-Mo-Al, 并研究了它们的储氢性能. 结果表明样品Fe-Mo改性效果最好: 如放氢温度由改性前的500 ℃降至改性后的290 ℃左右; 300 ℃时放氢速率最高, 由改性前的低于50 μmol•min-1• Fe-g-1到改性后的325 μmol•min-1•Fe-g-1 (10次平均); 4.53 wt%的平均实验储氢量与理论值4.8 wt%较接近; 储-放氢循环稳定性随着循环次数的增加呈逐渐增加的趋势. SEM微观结构和BET比表面积分析表明添加剂的种类对样品的改性作用更重要.  相似文献   

6.
Carbonyl iron powder was coated with phosphate layer using phosphating precipitation method. The phosphated powder was dried at 60 °C for 2 h in air and heat treated by calcination at 400 and 800 °C for 3 h in air. Cylindrical specimens density of ~6.5 g.cm?3 based on iron phosphated powder calcined at 400 °C were sintered at 820, 900, 1110 °C in N2 + 10%H2 atmosphere and 1240 °C in vacuum for 30 min. The morphology and phase composition of the phosphate coating and sintered compacts were studied by scanning electron microscopy, atomic force microscopy (AFM) and X‐ray diffraction (XRD) analysis. Gelatinous morphology of dried phosphate coating (thickness of ~100 nm) containing nanoparticles of iron oxyhydroxides and hydrated iron phosphate was observed. From XRD, diffractogram indicated the presence of goethite α‐FeOOH, lepidocrocite γ‐FeOOH and ludlamite Fe3(PO4)2.4H2O. The calcined phosphate coating (thickness of ~ 400 nm) contained non‐homogeneous consistency of α‐Fe2O3 layer on iron particles, an inter‐layer of amorphous FePO4 and Fe3O4 top layer. The transformation to crystalline FePO4 structure occurred during calcination at 800 °C with the presence of α‐Fe2O3 forming a light top zone (rough morphology). The microstructure of compacts sintered in solid state at temperatures up to 900 °C has retained composite network character. A fundamental change in microstructure due to the liquid phase sintering occurred after sintering at temperatures of 1100 and 1240 °C. It was confirmed that the microstructure complex consists of spheroidized α‐Fe and α‐Fe2O3 phases surrounded by solidified liquid phase consisting various phosphate compounds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The nanocrystalline cubic Phase of zirconia was found to be thermally stabilized by the addition of 2.56 to 17.65 mol % Y2O3 (5.0 to 30.0 mol % Y, 95.0 to 70.0 mol % Zr cation content). The cubic phase of yttria stabilized zirconia was prepared by thermal decomposition of the hydroxides at 400°C for 1 hr. 2.56 mol % Y2O3‐ZrO2 was stable up to 800°C in an argon atmosphere. The samples with 4.17 to 17.65 mol % Y2O3 were stable to 1200°C and higher. All samples at temperatures between 1450°C to 1700°C were cubic except the sample with 2.56 mol % Y2O3 which was tetragonal. The crystallite sizes observed for the cubic phase ranged from 50 to 150 Å at temperatures below 900°C and varied from 600 to 800 nm between 1450°C and 1700°C. Control of furnace atmosphere is the main factor for obtaining the cubic phase of Y‐SZ at higher temperature. Nanocrystalline cubic Fe‐SZ (Iron Stabilized Zirconia) with crystallite sizes from 70 to 137 Å was also prepared at 400°C. It transformed isothermally at temperatures above 800°C to the tetragonal Fe‐SZ and ultimately to the monoclinic phase at 900°C. The addition of up to 30 mol % Fe(III) thermally stabilized the cubic phase above 800°C in argon. Higher mol % resulted in a separation of Fe2O3. The nanocrystalline cubic Fe‐SZ containing a minimum 20 mol % Fe (III) was found to have the greatest thermal stability. The particle size was a primary factor in determining cubic or tetragonal formation. The oxidation state of Fe in zirconia remained Fe3+. Fe‐SZ lattice parameters and rate of particle growth were observed to decrease with higher iron content. The thermal stability of Fe‐SZ is comparable with that of Ca‐SZ, Mg‐SZ and Mn‐SZ prepared by this method.  相似文献   

8.
《Electroanalysis》2005,17(22):2068-2073
A new cathodic scheme for hydrogen peroxide (H2O2) measurement by Fe3O4‐based chemical sensor was described. The unique characteristic of electrocatalytic property was firstly investigated by voltammetry. And then the amperometric response of H2O2 was measured at ?0.2 V (vs. Ag/AgCl) by Fe3O4 modified glassy carbon rotating disk electrode. The kinetic parameter was also calculated from Koutecky‐Levich plot, and the value was 6.4×10?4 cm s?1 in pH 3 citrate buffer. In order to benefit the possible biomedical applications, Fe3O4/chitosan modified electrode was also investigated in this experiment. There were several characteristic enhancements by the coated chitosan thin film for H2O2 sensor. The calibration curves were found to be linear up to 4.0 and 5.0 mM (r=0.999) in pH 3 and 7 with the detection limits of 7.6 and 7.4 μM L?1 (S/N=3). The stability was evaluated by the results of half‐life time (t50%) for 9 months at room temperature and 24 months at 4 °C.  相似文献   

9.
徐高超  刘瑞泉 《中国化学》2009,27(4):677-680
利用溶胶—凝胶法制备了复合氧化物Sm1.5Sr0.5MO4 (M=Ni, Co, Fe)(SSM),并利用XRD和SEM等对样品进行表征。用Nafion膜作电解质、以SSM作为阴极、Ni-SDC金属陶瓷为阳极、银-铂网做集流体组成单电池,在温度为25℃~100℃的低温常压下以干燥氮气和湿的氢气为原料进行电化学合成氨气测定,同时研究了影响氨合成的关键因素,确定了合适的工作温度,实验结果表明,最高氨产率可达到1.05×10-8mol·s-1·cm-2。  相似文献   

10.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

11.
The sodium‐ion storage properties of FeS–reduced graphene oxide (rGO) and Fe3O4‐rGO composite powders with crumpled structures have been studied. The Fe3O4‐rGO composite powder, prepared by one‐pot spray pyrolysis, could be transformed to an FeS‐rGO composite powder through a simple sulfidation treatment. The mean size of the Fe3O4 nanocrystals in the Fe3O4‐rGO composite powder was 4.4 nm. After sulfidation, FeS nanocrystals of size several hundred nanometers were confined within the crumpled structure of the rGO matrix. The initial discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders were 740 and 442 mA h g?1, and their initial charge capacities were 530 and 165 mA h g?1, respectively. The discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders at the 50th cycle were 547 and 150 mA h g?1, respectively. The FeS‐rGO composite powder showed superior sodium‐ion storage performance compared to the Fe3O4‐rGO composite powder.  相似文献   

12.
Commercially, iron (α-Fe) and hematite (α-Fe2O3) powders were used for the synthesis of composite powders of Fe2O3/Fe type by mechanical milling. Several ratios of Fe2O3/Fe were chosen for the composite synthesis; the atomic percent of oxygen in the starting mixtures ranged from 21 to 46 %. The Fe2O3/Fe composite samples with various Fe/O ratios were milled for different milling times. The milled composite samples were subjected to the heat treatments in argon up to 900 °C. During the heat treatment at temperatures that do not exceed 550 °C, Fe3O4/Fe composite particles are formed by the reaction between the Fe2O3 and Fe. Further increase of the heat treatment up to 700 °C leads to the reaction of the Fe3O4/Fe composite component phases, resulting thus in the formation of FeO/Fe composite. The heat treatment up to 900 °C of the Fe2O3/Fe leads to the formation of a composite of FeO/Fe3O4/Fe independent of the milling time and Fe2O3/Fe ratios. The onset temperatures of the Fe3O4 and FeO formations decrease upon increasing the milling time. Another important aspect is that, in the case of the same milling time but with a large amount of iron into the composite powder the formations temperatures of Fe3O4 and FeO are also decreasing. The influence of the mechanical activation time, heat treatment temperature, and Fe/O ratio on the formation of the (Fe3O4, FeO)/Fe composite from Fe2O3+Fe precursor mixtures was studied by differential scanning calorimetry and X-ray diffraction techniques.  相似文献   

13.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   

14.
Graphitized carbon (GC) and graphene (GE) modified Fe2O3/Li4Ti5O12 (LTO) composites have been synthesized via a solid‐state reaction, respectively. The structure, morphology and electrochemical performance of the materials have also been characterized with X‐ray diffraction (XRD), scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) system, X‐ray photoelectron spectrometer (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical measurements. The discharge capacities of Fe2O3/LTO, GC/Fe2O3/LTO and GE/Fe2O3/LTO are 100.2 mAh g?1, 207.5 mAh g?1 and 238.9 mAh g?1 after 100 cycles at the current density of 176 mA g?1. The cyclic stability and rate capability are in the order of GE/Fe2O3/LTO > GC/Fe2O3/LTO > Fe2O3/LTO because of the synergistic effect between GC (GE) and Fe2O3/LTO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
First, attapulgite‐Fe3O4 magnetic filler (ATP‐Fe3O4) was prepared by using a chemical precipitation method. Subsequently, graphite oxide (GO) was prepared through Hummer method, and then reduced GO (RGO) was prepared through GO reduced by chitosan (CS). Finally, a series of WPU‐RGO/ATP‐Fe3O4/CS composites were prepared by introduced RGO/ATP‐Fe3O4/CS to waterborne polyurethane. The structure and properties were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis TGA, conductivity test, and tensile test. The experimental results indicated that thermal stability and tensile strength of nanocomposites were improved with the increase of the content of RGO/ATP‐Fe3O4/CS. Meanwhile, with the increase of the RGO/ATP‐Fe3O4/CS content, the electrical and magnetic properties of WPU‐RGO/ATP‐Fe3O4/CS composites were improved. When the content of RGO/ATP‐Fe3O4/CS was 8 wt%, the electrical conductivity and the saturation magnetic strength of WPU‐RGO/ATP‐Fe3O4/CS composites were 3.1 × 10?7 S·cm?1 and 1.38 emu/g, respectively. WPU‐RGO/ATP‐Fe3O4/CS composites have excellent electrical and magnetic properties.  相似文献   

16.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

17.
This study describes the synthesis and characterization of ethylenediaminetetraacetic acid (EDTA) functionalized magnetic nanoparticles of 20 nm in size – Fe3O4@SiO2‐EDTA – which were used as a novel magnetic adsorbent for Cd(II) and Pb(II) binding in aqueous medium. These nanoparticles were obtained in two‐stage synthesis: covering by tetraethyl orthosilicate and functionalization with EDTA derivatives. Nanoparticles were characterized using TEM, FT‐IR, and XPS methods. Metal ions were detected under optimized experimental conditions using Differential Pulse Anodic Stripping Voltammetry (DPASV) and Hanging Mercury Drop Electrode (HDME) techniques. We compared the ability of Fe3O4@SiO2‐EDTA to bind cadmium and lead in concentration of 553.9 μg L?1 and 647.5 μg L?1, respectively. Obtained results show that the adsorption rate of cadmium binding was very high. The equilibrium for Fe3O4@SiO2‐EDTA‐Cd(II) was reached within 19 min while for the Fe3O4@SiO2‐EDTA‐Pb(II) was reached within 25 minutes. About 2 mg of nanoparticles was enough to bind 87.5 % Cd(II) and 54.1 % Pb(II) content. In the next step the binding capacity of Fe3O4@SiO2‐EDTA nanoparticles was determined. Only 1.265 mg of Fe3O4@SiO2‐EDTA was enough to bind 96.14 % cadmium ions while 5.080 mg of nanoparticles bound 40.83 % lead ions. This phenomenon proves that the studied nanoparticles bind Cd(II) much better than Pb(II). The cadmium ions binding capacity of Fe3O4@SiO2‐EDTA nanoparticles decreased during storage in 0.5 M KCl solution. Two days of Fe3O4@SiO2‐EDTA storage in KCl solution caused the 32 % increase in the amount of nanoparticles required to bind 60 % of cadmium while eight‐days storage caused further increase to 328 %. The performed experiment confirmed that the storage of nanoparticles in solution without any surfactants reduced their binding capacity. The best binding capacity was observed for the nanoparticles prepared directly before the electrochemical measurements.  相似文献   

18.
Disha Soni  Rahul Pal 《Electroanalysis》2016,28(9):1951-1956
Phase pure nanocrystalline manganese iron oxide [(Mn0.37Fe0.63)2O3] was synthesized by combustion technique based on propellant chemistry principle employing citric acid as fuel. The synthesized powder was characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), BET, BJH analysis and electrochemical studies for possible application as a charge storage electrode. The average crystallite size was found to be 18.6 nm from XRD analysis. BET analysis yielded the surface area and specific pore volume of the powder to be 22.96 m2 g?1 and 0.0098 cm3 g?1 respectively. The specific capacitance from cyclic voltammetric studies at scan rate 5 mV s?1 was found to be about 30 F g?1 cm?2 while from charge discharge studies was found to be 27±1 F g?1 cm?2. In addition, the material showed appreciable stability during charge‐discharge cycling.  相似文献   

19.
龚静鸣  林祥钦 《中国化学》2003,21(7):761-766
Fe3O4 particles coated with acrylic copolymer (ACP) of about 5--8 nm in diameter were synthesized and used for immobilization of horseradish peroxidase (HRP). Direct electrochemistry of HRP embedded in the nanosized Fe304 solid matrix modified paraffin impregnated graphite electrode (PIGE) was achieved,which is related to the heine Fe(Ⅲ)/Fe(Ⅱ) conversion of HRP. Cyclic voltammetry gave a pair of reproducible and welldefined redox peaks at about Ea of -0.295 V vs. SCE. The standard rate constant k, was determined as 2.7 s^-1. It demonstrated that the nano-Fe3O4 solid matrix offers a friendly platform to assemble the HRP protein molecules and enhance the electron transfer rate between the HRP and the electrode. UV-Vis absorption spectra and WrIR spectra studies revealed that the embedded HRP retained its native-like structure. The HRP/Fe3O4/PIGE showed a strong catalytic activity toward H2O2. The voltammetric response was a linear function of H2O2 concentration in the range of 10-140μmol/L with detection limit of 7.3 μmol/L (s/n = 3 ). The apparent Michaelis-Menten constant is calculated to be 0.42 mmol/L.  相似文献   

20.
To improve the initial coulombic efficiency and bulk density of ordered mesoporous carbons, active Fe2O3 nanoparticles were introduced into tubular mesopore channels of CMK-5 carbon, which possesses high specific surface area (>1700 m2·g?1) and large pore volume (>1.8 cm3·g?1). Fine Fe2O3 nanoparticles with sizes in the range of 5–7 nm were highly and homogenously encapsulated into CMK-5 matrix through ammonia-treatment and subsequent pyrolysis method. The Fe2O3 loading was carefully tailored and designed to warrant a high Fe2O3 content and adequate buffer space for improving the electrochemical performance. In particular, such Fe2O3 and mesoporous carbon composite with 47 wt% loading exhibits a considerably stable cycle performance (683 mAh·g?1 after 100 cycles, 99% capacity retention against that of the second cycle) as well as good rate capability. The fabrication strategy can effectively solve the drawback of single material, and achieve a high-performance lithium electrode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号