首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

2.
The ground‐state band structure of polydiacetylenes is theoretically studied with the extensional Su–Schriffer–Heeger model supplemented by electron–electron interactions. The results show the following. First, the interval of valence bands (conduction bands) increases because of the electron–electron interactions. Second, the effect of the on‐site Coulomb energy (U) is different from that of the nearest neighbor Coulomb repulsion (V); the competition between U and V shows that U makes the bandwidth narrower and the gap broader, whereas V makes the bandwidth broader and the gap narrower. There is a critical value of U/V. Third, the whole band width (Ew) decreases when the U/V ratio is less than 1.0 and increases when the U/V ratio is greater than 1.0 at V = 2.0 eV. Thus, the ground‐state band structure is sensitive to the U/V ratio. The results also show that electron–electron interactions can play an important role in the band structure of polydiacetylenes. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1656–1661, 2000  相似文献   

3.
The influence of electron beam irradiation on the electrochemical properties of electrodeposited V2O5 thin films was investigated. V2O5 thin films were deposited electrochemically onto indium tin oxide-coated glass from an aqueous vanadyl sulfate hydrate (VOSO4nH2O) solution using Pt and Ag/AgCl as the counter electrode and reference electrode, respectively. Electrodeposition was performed potentiostatically at 1.7 V vs. Ag/AgCl. Electrodeposited samples were then subjected to a 1-MeV electron beam using an electron beam accelerator at the Korea Atomic Energy Research Institute. For comparison, a control sample was not irradiated with the electron beam. Crystallinity change before and after electron beam irradiation was investigated by X-ray diffraction and the oxidation state of vanadium determined by X-ray photoelectron spectroscopy. Scanning electron microscopy was utilized to examine surface morphology. It was observed that electron beam irradiation altered the oxidation state of vanadium and increased crystallinity. Significant morphological changes of V2O5 thin films were also observed with electron beam irradiation. Cyclic voltammetry was employed to evaluate the electrochemical properties of the synthesized V2O5 films in terms of their application as electrodes of lithium-ion battery. Compared with the control sample, which was not irradiated with an electron beam, the electron beam-irradiated V2O5 specimens showed much higher capacitance.  相似文献   

4.
A series of electron‐deficient π‐conjugated systems with 4,9‐dihydro‐s‐indaceno[2,1‐d:6,5‐d′]dithiazole‐4,9‐dione‐based structures and fluorinated acyl groups as the terminal units have been designed and synthesized for application as organic field‐effect transistor (OFET) materials. The thermal, photophysical, and electrochemical properties and OFET performance of the synthesized compounds were investigated. OFET evaluation revealed that all compounds exhibited typical electron‐transporting characteristics, and electron mobilities up to 0.26 cm2 V?1 s?1 could be achieved. The air stabilities of OFET operation were dependent on the nature of the compounds and were investigated by X‐ray diffraction and atomic force microscopy. The terminal units had a great influence not only on the molecular properties, but also on the film‐forming properties and OFET performance.  相似文献   

5.
HU  Na  NI  Zhongbin  CHU  Hong  LIU  Xiaoya  CHEN  Mingqing 《中国化学》2009,27(11):2249-2254
Poly(4‐vinylpyridine) macromonomer (St‐P4VP) with a styryl end group was synthesized by atom transfer radical polymerization (ATRP) of 4‐vinylpyridine using p‐(chloromethyl)styrene (CMSt) as functional initiator, CuCl as catalyst and tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as ligand in 2‐propanol. The structure of St‐P4VP macromonomer was identified by proton nuclear magnetic resonance (1H NMR). The result of gel permeation chromatography (GPC) illustrated that the number‐average molecular weight of St‐P4VP could be controlled by adjusting polymerization conditions. Poly(4‐vinylpyridine) grafted polystyrene microspheres (P4VP‐g‐PSt) were then prepared by dispersion copolymerization of styrene with St‐P4VP macromonomers. The effects of polymerization reaction parameters such as medium polarity, concentration of St‐P4VP macromonomer and polymerization temperature on the sizes and size distribution of P4VP‐g‐PSt microspheres were investigated. The results of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and laser light scattering (LLS) indicated that mono‐dispersed P4VP‐g‐PSt microspheres with average diameters of 100–200 nm could be obtained when the molar ratio of St to St‐P4VP was 0.25:100 in ethanol/water mixed solvents (V/V=80:20) at 60°C. Such kind of graft copolymer microspheres was expected to be applied to many fields such as drug delivery system and protein adsorption/separation system due to their particular structure.  相似文献   

6.
A series of V2O5/MgO catalysts containing 1 to 20 wt % V2O5 were prepared and characterized by means of X-ray diffraction, FT-infrared, electron spin resonance, scanning electron microscopy, NH3 and CO2 uptake measurements. Activity and selectivity of the catalysts were evaluated for selective oxidation of 4-methylanisole to p-anisaldehyde. Characterization results suggest that the vanadia when impregnated on magnesia interacts strongly with the support and results in the formation of a magnesium orthovanadate compound instead of two-dimensional over layers on the support surface. The V−Mg−O compound formed exhibits good conversion and product selectivity for the title reaction. Attempts are made to correlate the acid-base characteristics of the catalysts, obtained from NH3 and CO2 uptakes, with their catalytic properties.  相似文献   

7.
ABSTRACT

The rapid development of consumer electronics and portable devices imposes a great demand for energy efficient information display systems. Among the information display devices, liquid crystal display (LCD) devices stands in the front. The fabrication of energy-efficient LCD systems demands new material and techniques. In this work, the conventional polyimide alignment layer of twisted nematic liquid crystal device (TNLCD) was replaced with ferroelectric polymer nanoparticle doped alignment layer. Morphology of the alignment layer was analysed using field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The ferroelectric nature of the polymer alignment layer was studied using dynamic contact electrostatic force microscopy (DC-EFM). TNLCD cells are fabricated with this modified alignment layer and the switching characteristics are compared with the conventional TNLCD devices. The TNLCD with modified alignment layer has shown a reduction of 50% in threshold (Vthr) and 47% reduction in saturation voltage (Vsat).  相似文献   

8.
Procedures for obtaining hedrites, ovoids, and spiral ovoids in polyoxymethylene are described. Results of morphological studies on these structures by optical and electron microscopy are presented. Small-angle light scattering studies on single isolated supermolecular structures are described. The Vv and Hv diffraction patterns obtained experimentally are discussed in the light of theoretical results of Part I of this study.  相似文献   

9.
A novel 3D hierarchical flowerlike vanadium sesquioxide (V2O3) nano/microarchitecture consisting of numerous nanoflakes is prepared via a solvothermal approach followed by an appropriate heating treatment. The as‐obtained nanostructured V2O3 flower is characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, and transmission electron microscopy (TEM) (or/and high‐resolution TEM, HRTEM), and it is found that the V2O3 flower is constructed by single‐crystalline nanoflakes. Furthermore, it is demonstrated that the surface of the flowerlike V2O3 material is composed of nanostructured pores, which derive from the adsorption/desorption of nitrogen, and that the pore‐size distribution depends on the unique three‐dimensional interconnection between nanoflakes and on their intrinsic properties. The electrochemical behavior of the V2O3 flower for lithium‐ion insertion/extraction in non‐aqueous solution as well as the faradaic capacitance for pesudocapacitors in a neutral aqueous solution are also investigated. A reversible discharge capacity as high as 325 mA h g?1 is obtained at a current density of 0.02 A g?1 from a LiClO4/EC:DEC electrolyte solution (i.e. LiClO4 in ethyl carbonate and diethyl carbonate). When used as the cathode material of pesudocapacitors in Li2SO4, the flowerlike oxide displayed a very high initial capacitance of 218 F g?1 at a current density of 0.05 A g?1. We believe that the good performance of the flowerlike V2O3 electrode is most probably due to its unique 3D hierarchical nano/microarchitecture, which shows that the electrochemical properties of a cathodic material do not only depend on the oxidation state of that material but also—to a large extent—on its crystalline structure and morphology. The aforementioned properties suggest that the present V2O3 flower materials may have a great potential to be employed as electrode materials in rechargeable lithium batteries and pesudocapacitors.  相似文献   

10.
The synthesis and properties of the molecular reduction device 7b (CoII–V) consisting of a reduction catalyst (a derivative of vitamin B12, CoII) and a covalently linked 10-electron reservoir (five viologen units, V++) is described. The five viologen subunits were introduced at C(2) and C(3) of the side chains c and g and b, e and f, respectively, of an appropriate derivative of heptamethyl cob(III)yrinate by N-alkylation of 1-methyl-4,4′-bipyridinium iodide (see Scheme). The pentaviologen-linked corrinatocobalt(II) complex 7b behaves as a molecular electron trap with respect to the CoIII/CoII redox couple. The phenomenon is related to the structural and thermodynamic relation of the corrin and viologen subunits in 7b , i.e. the relative redoc energies and the spherical inner-outer arrangement of the types of redox systems. When completely reduced to CoI–V, 7b exhibits multiple reductive elimination of trans-1,2-dibromocyclohexane to cyclohexene under concomitant oxidation to CoII–V. Rate measurements indicate that the reduction occurs via CoI which is regenerated by intramolecular electron transfer from the periphery of the molecule, i.e. by V0 and V++.  相似文献   

11.
溶胶凝胶法合成了层状的LiTiyV3-0.8yO8(y=0, 0.04, 0.06, 0.08)正极材料,这些材料因为掺杂Ti量的不同,而具有了不同的形貌特征(形状,粒径,比表面积)以及电化学性质(首次充放电容量, 循环容量等)。XRD,SEM, CV,及充放电测试对该正极材料的结构和电化学性能进行了表征,结果表明当y=0.04时,该正极材料拥有最高的首次放电容量(348.9mAhg-1)和最好的容量循环性能。  相似文献   

12.
以五水硝酸铋和氯化钠为原料,乙二醇(EG)和水作溶剂,通过声化学辅助溶剂热法合成了系列BiOCl纳米晶光催化剂。应用氮气物理吸附、X射线粉末衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、紫外-可见(UV-Vis)漫反射(DRS)和光电流等测试手段对所制备的光催化剂进行了表征。在汞灯和氙灯照射下,以苯酚和甲基橙为水体模型污染物,系统考察了超声辐射时间和醇水比(VEG/VH2O)对BiOCl光催化剂性能的影响。结果表明,当超声辐射时间为60 min,VEG/VH2O=1/4时,合成的BiOCl表现出最佳的光催化活性,为常规沉淀法制备的BiOCl的3.3倍。活性提高的主要原因是,适当时间的超声波辐射和醇水比有利于催化剂比表面积的提高,同时可以丰富催化剂表面羟基(-OH)的数量和提高光生电子和空穴的分离效率。  相似文献   

13.
A study of the conditions of applicability to weak complexes of the relation log x = v log V + log (βv,cCc) = f(logV), where V and C are variable and constant total concentrations of the constituants of the complexe, shows that for conditions other than C ? V, another function φ(log V) accounts better for the formation equilibrium of the complexe. From f(log V) and φ (log V) a relation t(log V) is derived whose simple analysis permits the determination of the composition and the stability constant of weak complexes. Applications are given to 1:1, 1:2, 2:2 composition.  相似文献   

14.
以五水硝酸铋和氯化钠为原料,乙二醇(EG)和水作溶剂,通过声化学辅助溶剂热法合成了系列BiOCl纳米晶光催化剂。应用氮气物理吸附、X射线粉末衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、紫外-可见(UV-Vis)漫反射(DRS)和光电流等测试手段对所制备的光催化剂进行了表征。在汞灯和氙灯照射下,以苯酚和甲基橙为水体模型污染物,系统考察了超声辐射时间和醇水比(VEG/VH2O)对BiOCl光催化剂性能的影响。结果表明,当超声辐射时间为60 min,VEG/VH2O=1/4时,合成的BiOCl表现出最佳的光催化活性,为常规沉淀法制备的BiOCl的3.3倍。活性提高的主要原因是,适当时间的超声波辐射和醇水比有利于催化剂比表面积的提高,同时可以丰富催化剂表面羟基(-OH)的数量和提高光生电子和空穴的分离效率。  相似文献   

15.
Donor–acceptor block copolymers (BCP), incorporating poly(3‐hexylthiophene) (P3HT), and a polystyrene copolymer with pendant fullerenes (PPCBM) provide desired stable nanostructures, but mostly do not exhibit balanced charge carrier mobilities. This work presents an elegant approach to match hole and electron transport in BCP by blending with molecular PCBM without causing any macrophase separation. An insufficient electron mobility of PPCBM can be widely compensated by adding PCBM which is monitored by the space‐charge limited current method. Using X‐ray diffraction, atomic force microscopy, and differential scanning calorimetry, we verify the large miscibility of the PPCBM:PCBM blend up to 60 wt % PCBM load forming an amorphous, molecularly mixed fullerene phase without crystallization. Thus, blending BCP with PCBM substantially enhances charge transport achieving an electron mobility of μe=(3.2 ± 1.7) × 10?4 cm2V?1s?1 and hole mobility of μh=(1.8 ± 0.6) × 10?3 cm2V?1s?1 in organic field‐effect transistors (OFET). The BCP:PCBM blend provides a similarly high ambipolar charge transport compared to the established P3HT:PCBM system, but with the advantage of an exceptionally stable morphology even for prolonged thermal annealing. This work demonstrates the feasibility of high charge transport and stable morphology simultaneously in a donor–acceptor BCP by a blend approach. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1125–1136  相似文献   

16.
Mechanical activation (MA) of the LiOH+V2O5 and Li2CO3+V2O5 mixtures followed by brief heating at 673 K was used to prepare dispersed Li1+xV3O8. It was shown that structural transformations during MA are accompanied by reduction processes. EPR spectra of Li1+xV3O8 are attributed to vanadyl VO2+ ions with weak exchange interaction. The interaction of localized electrons (V4+ ions) with electron gas (delocalized electrons), which is exhibited through the dependence of EPR line width of vanadium ions versus measurement temperature (C–S–C relaxation), is revealed. It is shown that C–S–C relaxation is different for intermediate and final products. The properties of mechanochemically prepared Li1+xV3O8 are compared with those of HT-Li1+xV3O8, obtained by conventional solid state reaction. Mechanochemically prepared Li1+xV3O8 is characterized by a similar amount of vanadium ions, producing electron gas, but a higher specific surface area.  相似文献   

17.
Abstract

Vanadium pentoxide gels and sols, V2O5, nH2O, exhibit a ribbon-like structure. They form colloidal suspensions (also called Zocher phases or ‘tactophases’) which are clearly shown here to present a homogeneous lyotropic nematic phase for concentrations larger than ≈0·12mol 1?1. Classical threaded textures were observed in polarized light and small angle X-ray scattering patterns of oriented samples displayed a diffuse spot quite comparable to that of the Tobacco Mosaic Virus. For a sample of volume fraction φ ≈ 5 per cent, the V2O5 ribbons are separated by about 160 Å, so that the cross sectional area of the ribbons is about 1300 Å2, in agreement with previous estimations by electron microscopy.  相似文献   

18.
Polymers having 2,5‐diphenyl‐1,3,4‐oxadiazole (BCO) or anthracene (BCA) as an electron transport unit and N,N′‐diphenyl‐N,N′‐bis(4‐butylphenyl)‐benzidine (BTPD) as a hole transport unit were prepared by condensation polymerization using Friedel–Crafts reaction. It was found that BCO was less reactive than BCA. The low reactivity of the BCO monomer can be explained by the oxygen atom in the oxadiazole unit, which acts as a Lewis base and reduces the activity of the catalyst. The redox behavior measured by cyclic voltammetry showed for both BTPD‐BCO and BTPD‐BCA almost the same oxidation potential. In addition, the BTPD‐BCO also exhibited a reduction peak. Hole and electron drifts mobility of the polymers were measured by the time‐of‐flight method. The hole drift mobility of both BTPD‐BCO and BTPD‐BCA was 7.4 × 10?5 cm2 V?1 s?1. The electron drift mobilities of BTPD‐BCO and BTPD‐BCA were 6.5 × 10?5 cm2 V?1 s?1 and 5.2 × 10?6 cm2 V?1 s?1, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3083–3089, 2007  相似文献   

19.
The local density approximation (LDA) to the exchange potential Vx( r ), namely the ρ1/3 electron gas form, was already transcended in Slater's 1951 paper. Here, using Dirac's 1930 form for the exchange energy density ? x( r ), the Slater (Sl) nonlocal exchange potential V( r ) is defined by 2? x( r )/ρ( r ). In spherical atomic ions, say the Be or Ne‐like series, this form V( r ) already has the correct behavior in both r → 0 and r → ∞ limits when known properties of the exchange energy density ? x( r ) and the ground‐state electron density ρ( r ) are invoked. As examples, some emphasis will first be given to the use of the so‐called 1/Z expansion in such spherical atomic ions, for which analytic results can be obtained for both ? x( r ) and ρ( r ) as the atomic number Z becomes large. The usefulness of the 1/Z expansion is directly demonstrated for the U atomic ion with 18 electrons by comparison with the optimized effective potential prediction. A rather general integral equation for the exchange potential is then proposed. Finally, without appeal to large Z, two‐level systems are considered, with specific reference to the Be atom and to the LiH molecule. In all cases treated, the Slater potential V( r ) is a valuable starting point, even though it needs appreciable quantitative corrections reflecting directly atomic shell structure. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

20.
N-ZIF-(1:0)@NiCo-LDH, N-ZIF-(1:3.5)@NiCo-LDH and N-ZIF-(0:1)@NiCo-LDH were prepared by mixing solvents in various volume ratios (Vmethanol:Vwater = 1:0, 1:3.5 and 0:1) when synthesizing precursors. These composite materials were characterized using scanning and transmission electron microscopies, X-ray diffraction, X-ray photoelectron spectroscopy and nitrogen adsorption–desorption measurements, and investigated as catalysts for reduction of 4-nitrophenol, methyl orange and methylene blue. The NaBH4 concentration as an important factor that may affect catalytic activity for reduction of 4-nitrophenol was examined. Under optimal experimental conditions, the excellent catalytic activity of the N-ZIF-(0:1)@NiCo-LDH composite, compared to that of N-ZIF-(1:0)@NiCo-LDH and N-ZIF-(1:3.5)@NiCo-LDH composites, could be attributed to the presence of graphitic nitrogen. In addition, compared with previously reported catalysts, all catalysts prepared show excellent catalytic activity owing to the unique structure exposing more active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号